精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(2x+φ) (-π<φ<0)的一个对称中心为(
π
8
,0)
(1)求φ;
(2)求函数y=f(x)在,[0,π]上的单调增区间;
(3)令g(x)=f(x+
4
),解不等式log2[2g(x)+1]≥1.
分析:(1)由题意知
π
8
+φ=2kπ(k∈Z),进而结合φ的范围可得答案.
(2)由正弦函数的单调区间,可得-
π
8
+kπ≤x≤
π
8
+kπ,(k∈Z)
,再结合x的范围给k取值可得答案.
(3)由题意得到g(x)=-cos(2x-
π
4
),所以可得log2[-2cos(2x-
π
4
)+1]≥1,即cos(2x-
π
4
≤-
1
2
,再结合余弦函数的性质求解不等式即可.
解答:解:(1)由题意知
π
8
+φ=2kπ(k∈Z),
因为-π<φ<0,所以k=0,φ=-
π
4

(2)由-
π
2
+2kπ≤2x-
π
4
π
2
+2kπ,(k∈Z)
,可得-
π
8
+kπ≤x≤
π
8
+kπ,(k∈Z)

因为x∈[0,π],所以当k=0,1时,得到函数的单调增区间为[0,
8
],[
8
,π]

(3)由题意可得:g(x)=f(x+
4
)=sin[2(x+
4
)-
π
4
]=sin(2x-
π
4
+
2
)=-cos(2x-
π
4
),
所以log2[2g(x)+1]=log2[-2cos(2x-
π
4
)+1]≥1,
即可得cos(2x-
π
4
≤-
1
2

所以
3
+2kπ≤2x-
π
4
3
+2kπ,(k∈Z)

所以
11π
24
+kπ≤x≤
19π
24
+kπ,(k∈Z)

所以不等式的解集为[
11π
24
+kπ,
19π
24
+kπ],(k∈Z)
点评:解决此类问题的关键是熟练掌握正弦函数与余弦函数的一个性质,并且结合正确的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,取得极小值
π
3
-
3

(1)求a,b的值;
(2)对任意x1x2∈[-
π
3
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,试求实数m的取值范围;
(3)设直线l:y=g(x),曲线S:y=F(x),若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x),则称直线l与曲线S的“上夹线”.观察下图:

根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并作适当的说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-blnx在(1,2]是增函数,g(x)=x-b
x
在(0,1)为减函数.
(1)求b的值;
(2)设函数φ(x)=2ax-
1
x2
是区间(0,1]上的增函数,且对于(0,1]内的任意两个变量s、t,f(s)≥?(t)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求满足该不等式的最大整数M;
(2)如果对任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案