【题目】袋中有相同的5个白球和4个黑球,从中任意摸出3个,求下列事件发生的概率.
(1)摸出的全是白球或全是黑球、
(2)摸出的白球个数多于黑球个数.
【答案】(1)
(2)![]()
【解析】
(1)从袋中任意摸出3个球有
种不同情况,摸出的全是白球有
种不同情况,摸出的全是黑球有
种不同情况,计算概率得到答案.
(2)摸出的3个球都是白球的事件,记为
;摸出2个白球,1个黑球的事件,记为
.计算概率得到答案.
(1)设从袋中摸出的3个球全是白球或全是黑球的事件为
,
从袋中任意摸出3个球有
种不同情况,
摸出的全是白球有
种不同情况,
摸出的全是黑球有
种不同情况,
因为从袋中任意摸出3个球的所有情况都是等可能的,
所以
.
(2)设从袋中摸出的白球个数多于黑球个数的事件为
.
事件
包含两个基本事件:
第一个,摸出的3个球都是白球的事件,记为
;
第二个,摸出2个白球,1个黑球的事件,记为
.
,
.
所以,
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,点
,直线
,圆
.
(1)求
的取值范围,并求出圆心坐标;
(2)有一动圆
的半径为
,圆心在
上,若动圆
上存在点
,使
,求圆心
的横坐标
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
到定直线
:
的距离比到定点
的距离大2.
(1)求动点
的轨迹
的方程;
(2)在
轴正半轴上,是否存在某个确定的点
,过该点的动直线
与曲线
交于
,
两点,使得
为定值.如果存在,求出点
坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
(
)的左、右焦点为
,右顶点为
,上顶点为
.已知
.
(1)求椭圆的离心率;
(2)设
为椭圆上异于其顶点的一点,以线段
为直径的圆经过点
,经过原点
的直线
与该圆相切,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,椭圆
:
经过点
.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上的任意一点,射线
与椭圆
交于点
,过点
的直线
与椭圆
有且只有一个公共点,直线
与椭圆
交于
,
两个相异点,证明:
面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,椭圆
:
经过点
.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上的任意一点,射线
与椭圆
交于点
,过点
的直线
与椭圆
有且只有一个公共点,直线
与椭圆
交于
,
两个相异点,证明:
面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径AD⊥BC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为
。
![]()
(1)求圆锥的侧面积;
(2)求异面直线AB与SD所成角的大小;
(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为
,求三棱锥的侧棱PA与底面ABC所成角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点
,且与圆
外切于点
,过点
作圆C的两条切线PM,PN,切点为M,N.
(1)求圆C的标准方程;
(2)试问直线MN是否恒过定点?若过定点,请求出定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com