已知函数
其中![]()
(1)证明函数f(x)的图像在y轴的一侧;
(2)求函数
与
的图像的公共点的坐标。
科目:高中数学 来源:2013-2014学年福建省福州市高三毕业班质检文科数学试卷(解析版) 题型:解答题
已知函数
.其中
.
(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(2)若f(x)≤g(x)-1对任意x>0恒成立,求实数
的值;
(3)当
<0时,对于函数h(x)=f(x)-g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为
,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏盐城第一中学高三第二学期期初检测文科数学试卷(解析版) 题型:解答题
已知函数
,其中
.
(1)当
时,求函数
在
处的切线方程;
(2)若函数
在区间(1,2)上不是单调函数,试求
的取值范围;
(3)已知
,如果存在
,使得函数![]()
在
处取得最小值,试求
的最大值.
查看答案和解析>>
科目:高中数学 来源:2013届浙江宁波四校高二下学期期中联考理科数学试卷(解析版) 题型:解答题
已知函数
, 其中
.
(1)当
时,求曲线
在点
处的切线方程;
(2)当
时,求曲线
的单调区间与极值.
【解析】第一问中利用当
时,
,![]()
,得到切线方程
第二问中,![]()
![]()
对a分情况讨论,确定单调性和极值问题。
解: (1) 当
时,
,![]()
………………………….2分
切线方程为:
…………………………..5分
(2) ![]()
…….7
分
分类: 当
时, 很显然
的单调增区间为:
单调减区间:
,![]()
,
………… 11分
当
时
的单调减区间:
单调增区间:
,
![]()
, ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com