精英家教网 > 高中数学 > 题目详情

如图,AC是圆O的直径,点B在圆O上,交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1,

(1)证明

(2)(文科)求三棱锥的体积

(理科)求平面和平面所成的锐二面角的正切值.

 

【答案】

(1)详见解析;(2)(文科);(理科)1

【解析】

试题分析:(1)要证明直线和直线垂直,只需证明线和面垂直,由 ,∴,从而,在梯形中,证明,从而,∴;(2)(文科)求三棱锥的体积,关键是确定三棱锥的高,往往需要等体积转化,,可得;(2)理科,题中未给出两个半平面的交线,首先确定交线,延长,连结,然后先找二面角的平面角,再计算,过,垂足,连接,证明,则就是所求二面角的平面角,计算即得结果.

试题解析:⑴∵EA⊥面ABC,BM面ABC,∴EA⊥MB,∴MB⊥AC,AC∩EA=A,∴MB⊥面ACEF,

∵EM面ACEF,∴EM⊥MB,在直角梯形ACEF中,EA=3,FC=1,AC=4,∴EF=,在Rt△ABC中, ∵

∠BAC=30°,BM⊥AC,∴AM=3,CM=1,∴EM=,MF=,∵EF2=EM2+MF2,∴EM⊥MF,  

又MB∩MF=M,∴EM⊥面MBF,   ∵BF面MBF,∴EM⊥BF       8分

⑵(文科) 由(1)知, MB⊥面ACFE    ∴,在直角梯形ACEF中,,∴       14分

(理科)延长EF交AC于H,连结BH,过C做CG⊥BH,垂足G,FC∥EA,EA⊥面ABC,

∴FC⊥面ABC,∵BH面ABC,∴BH⊥FC,∵FC∩CG=C,∴BH⊥面FCG,∵FG面FCG,∴BH⊥FG,∴∠CGF为平面BEF与平面ABC所成的二面角的平面角,在直角梯形ACEF中,CH=2,,在△BCH中,CH=2,BC=2,∠BCH=,∴CG=1,在Rt△CGF中,FC=1,

∴∠CGF=,平面BEF与平面ABC所成的锐二面角正切值为1       14分

考点:1、线面垂直和线线垂直;2、(文科)三棱锥的体积;(理科)二面角的求法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当m=
6
+
2
2
时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当数学公式时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省宿迁市沭阳县高一(下)期中数学试卷(解析版) 题型:解答题

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源:陕西省宝鸡中学2010届高三适应性训练(数学理) 题型:填空题

 A.(参数方程与极坐标)

直线与直线的夹角大小为         

 

B.(不等式选讲)要使关于x的不等式在实数

范围内有解,则A的取值范围是                  

C.(几何证明选讲) 如图所示,在圆O中,AB是圆O的直

径AB =8,E为OB.的中点,CD过点E且垂直于AB,

EF⊥AC,则

CF•CA=            

 

 

 

 

查看答案和解析>>

同步练习册答案