精英家教网 > 高中数学 > 题目详情
如图,点F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A、B是椭圆的两个顶点,椭圆的离心率为
1
2
.点C在x轴上,BC⊥BF,且B、C、F三点确定的圆M恰好与直线x+
3
y+3=0
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,在x轴上是否存在定点N,使得NF恰好为△PNQ的内角平分线,若存在,求出点N的坐标,若不存在,请说明理由.
精英家教网
(Ⅰ)∵
c
a
=
1
2

∴c=
1
2
a,b=
a2-c2
=
3
2
a,
又F(-c,0),B(0,b),在直角三角形BFO中,tan∠BFO=
|OB|
|OF|
=
b
c
=
3

∴∠BFO=
π
3
.|BF|=a.
∵BC⊥BF,
∴∠BCF=
π
6

∴|CF|=2a.
∴B、C、F三点确定的圆M的圆心M的坐标为:(
a
2
,0),半径r=a;
又圆M与直线x+
3
y+3=0
相切,
∴圆心M到直线x+
3
y+3=0的距离等于r,即
|
a
2
+0+3|
2
=a,又a>0,
∴a=2,
∴b=
3

∴椭圆的方程为:
x2
4
+
y2
3
=1

(Ⅱ)假设在x轴上是否存在定点N,使得NF恰好为△PNQ的内角平分线,
则由角平分线的性质定理得:
|PF|
|FQ|
=
|PN|
|NQ|
,又|PF|+|PN|=2a=4,|QF|+|QN|=2a=4,
|PF|
|FQ|
=
4-|PF|
4-|FQ|

∴|PF|=|QF|,即F为PQ的中点,
∴PQ⊥x轴,这与已知“过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点”矛盾,
∴假设不成立,即在x轴上不存在定点N,使得NF恰好为△PNQ的内角平分线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知半椭圆
x2
b2
+
y2
a2
=1 (y≥0)
和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆
x2
b2
+
y2
a2
=1 (y≥0)
内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点M(
6
3
,-
3
3
)
时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,一个焦点坐标为F(-
3
,0)

(1)求椭圆C1的方程;
(2)点N是椭圆的左顶点,点P是椭圆C1上不同于点N的任意一点,连接
NP并延长交椭圆右准线与点T,求
TP
NP
的取值范围;
(3)设曲线C2:y=x2-1与y轴的交点为M,过M作两条互相垂直的直线与曲线C2、椭圆C1相交于点A、D和B、E,(如图),记△MAB、
△MDE的面积分别是S1,S2,当
S1
S2
=
27
64
时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高三(上)周练数学试卷(12.22)(解析版) 题型:解答题

已知半椭圆和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省盐城中学高考数学一模试卷(解析版) 题型:解答题

已知半椭圆和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省苏州市六校联合高三调研数学试卷(解析版) 题型:解答题

已知半椭圆和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

查看答案和解析>>

同步练习册答案