精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的定义域为R,f′(x)为函数f(x)的导函数,当x∈[0.+∞)时,2sinxcosx﹣f′(x)>0且x∈R,f(﹣x)+f(x)+cos2x=1.则下列说法一定正确的是(
A. ﹣f(﹣ )> ﹣f(﹣
B. ﹣f(﹣ )> ﹣f(﹣
C. ﹣f( )> ﹣f(
D. ﹣f(﹣ )> ﹣f(

【答案】B
【解析】解:令F(x)=sin2x﹣f(x),则F′(x)=2sinxcosx﹣f′(x)>0,x∈[0.+∞)时.

∴F(x)在x∈[0,+∞)上单调递增.又x∈R,f(﹣x)+f(x)+cos2x=1.

∴f(﹣x)+f(x)=2sin2x,

∴sin2(﹣x)﹣f(﹣x)=sin2x﹣2sin2x+f(x)=﹣[sin2x﹣f(x)],

故F(x)为奇函数,

∴F(x)在R上单调递增,∴ >F

﹣F

故选:B.

【考点精析】关于本题考查的基本求导法则,需要了解若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线 与圆x2+y2=1相交于A、B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最小值为(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学中文系共有本科生5000人,其中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生(
A.100人
B.60人
C.80人
D.20人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+(﹣1)nan=3n﹣1,则{an}的前60项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x),恒有f(x)=f(2﹣x)成立,且f′(x)(x﹣1)>0,对任意的x1<x2 , 则f(x1)<f(x2)成立的充要条件是( )
A.x2>x1≥1
B.x1+x2>2
C.x1+x2≤2
D.x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=2lnx+x2﹣ax. (Ⅰ)当a=5时,求f(x)的单调区间;
(Ⅱ)设A(x1 , y1),B(x2 , y2)是曲线y=f(x)图象上的两个相异的点,若直线AB的斜率k>1恒成立,求实数a的取值范围;
(Ⅲ)设函数f(x)有两个极值点x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(kx+4)lnx﹣x(x>1),若f(x)>0的解集为(s,t),且(s,t)中只有一个整数,则实数k的取值范围为(
A.( ﹣2,
B.( ﹣2, ]
C.( ﹣1]
D.( ﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+1满足f(﹣1)=0,且x∈R时,f(x)的值域为[0,+∞).
(1)求f(x)的表达式;
(2)设函数g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]时是单调函数,求实数k的取值范围;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数是( ) ①若f(x)= +a为奇函数,则a=
②“在△ABC中,若sinA>sinB,则A>B”的逆命题是假命题;
③“三个数a,b,c成等比数列”是“b= ”的既不充分也不必要条件;
④命题“x∈R,x3﹣x2+1≤0”的否定是“x0∈R,x03﹣x02+1>0”.
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案