【题目】某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高
为
,储粮仓的体积为
.
![]()
(1)求
关于
的函数关系式;(圆周率用
表示)
(2)求
为何值时,储粮仓的体积最大.
【答案】(Ⅰ)
,
.(Ⅱ)
.
【解析】试题分析:(Ⅰ)由题圆锥和圆柱的底面半径
, 可得储粮仓的体积
,
.
(Ⅱ)利用导数求(Ⅰ)中的函数最值即可.
试题解析:(Ⅰ)∵圆锥和圆柱的底面半径
, ∴
.
∴
,即
,
.
(Ⅱ)
,令
,
解得
,
.又
,∴
(舍去).
当
变化时,
的变化情况如下表:
![]()
故当
时,储粮仓的体积最大.
点晴:研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立模型的步骤可分为: (1) 分析问题中哪些是变量,哪些是常量,分别用字母表示; (2) 根据所给条件,运用数学知识,确定等量关系; (3) 写出f(x)的解析式并指明定义域.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为
(φ为参数,0≤φ≤π),曲线C2的参数方程为
(t为参数).
(1)求C1的普通方程并指出它的轨迹;
(2)以O为极点,x轴的非负半轴为极轴建立极坐标系,射线OM:θ=
与半圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线a、b和平面
,下列说法中正确的有______ .
若
,则
;
若
,则
;
若
,则
;
若直线
,直线
,则
;
若直线a在平面
外,则
;
直线a平行于平面
内的无数条直线,则
;
若直线
,那么直线a就平行于平面
内的无数条直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(α>b>0)的右焦点到直线x﹣y+3
=0的距离为5,且椭圆的一个长轴端点与一个短轴端点间的距离为
.
(1)求椭圆C的方程;
(2)在x轴上是否存在点Q,使得过Q的直线与椭圆C交于A、B两点,且满足
+
为定值?若存在,请求出定值,并求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
.如图所示,斜率为
且不过原点的直线
交椭圆
于
两点,线段
的中点为
,射线
交椭圆
于点
,交直线
于点
.
(Ⅰ)求
的最小值;
(Ⅱ)若
,
求证:直线
过定点;
(ii)试问点
能否关于
轴对称?若能,求出此时
的外接圆方程;若不能,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com