精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC=BC=,AA1=1,∠ACB=90°
(Ⅰ)求异面直线A1B与CB1所成角的大小;
(Ⅱ)问:在A1B1边上是否存在一点Q,使得平面QBC与平面A1BC所成的角为30°,若存在,请求点Q的位置,若不存在,请说明理由.

【答案】分析:在含有直线与平面垂直垂直的条件的棱柱、棱锥、棱台中,可以建立空间直角坐标系,设定参量求解.比如此题中,我们可以以C为坐标原点,分别以CA、CB、CC1为x、y、z轴,建立空间直角坐标系C-xyz.这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.A1,0,1),B1(0,,0),C(0,0,0),,B(0,,1)
(Ⅰ)=(-,-1),|=|,=(0,,1),=2
(Ⅱ)假设在A1B1边上是否存在一点Q,使得平面QBC与平面A1BC所成的角为30°,反推计算可得.
解答:解:建立如示空间直角坐标系,则
A1,0,1),B1(0,,0),C(0,0,0),,B(0,,1),=(-,-1),|=|
=(0,,1),=2,
cos<>===
异面直线A1B与CB1所成的角为arccos(6分)
(Ⅱ)答:存在这样的点Q,使得面QBC与面A1BC成30°角
解:∵是直三棱柱,又∠ACB=90°,∴BC⊥CA1,BC⊥CC1
∴∠A1CC1是二面角A1-BC-C1所成的平面角
在Rt△A1C1C中,∠A1CC1=60°(8分)
在A1B1边上取一点Q,在平面A1B1C1中作QP∥B1C1,交A1C1于P,连PC
过证PQBC共面
∴∠A1CP就是Q-BC-A1的平面角为30°(10分)
∵30°<60°,故有在点P,在角A1CC1的平分线上
在Rt△PC1C中,可PC1=
又A1B1=,由相似比可得,Q在距点A处(或距B1处)(12分)
点评:本小题主要考查空间线面关系、面面关系、二面角的度量、异面直线所成的角等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案