【题目】
已知函数
,其中
,记函数
的定义域为
.
(1)求函数
的定义域
;
(2)若函数
的最大值为
,求
的值;
(3)若对于
内的任意实数
,不等式
恒成立,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若
,则
”的逆否命题为:“若
,则
”
B.“
”是“
”的充分不必要条件
C.若
且
为假命题,则
、
均为假命题
D.命题
:“
,使得
”,则
:“
,均有
”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右焦点为
,右顶点为
,已知
,其中
为原点,
为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点
的直线
与椭圆交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线的
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:①若
,则
或
;
②
,都有
;
③若
是实数,则
是
的充分不必要条件;
④“
” 的否定是“
” ;
其中真命题的个数是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两地相距
,汽车从甲地行驶到乙地,速度不得超过
,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
(
)的平方成正比,比例系数为
,固定部分为
元,
(1)把全程运输成本
(元)表示为速度
(
)的函数,指出定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水仙花经营部每天的房租、水电、人工等固定成本为1000元,每盆水仙花的进价是10元,销售单价
(元) (
)与日均销售量
(盆)的关系如下表,并保证经营部每天盈利.
| 20 | 35 | 40 | 50 |
| 400 | 250 | 200 | 100 |
| 20 | 35 | 40 | 50 |
| 400 | 250 | 200 | 100 |
(Ⅰ) 在所给的坐标图纸中,根据表中提供的数据,描出实数对
的对应点,并确定
与
的函数关系式;
(Ⅱ)求出
的值,并解释其实际意义;
![]()
(Ⅲ)请写出该经营部的日销售利润
的表达式,并回答该经营部怎样定价才能获最大日销售利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,
,
.
(1)若
,且
,求
的值;
(2)将函数
的图像向右平移
个单位长度得到函数
的图像,若函数
在
上有零点,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com