精英家教网 > 高中数学 > 题目详情
证明:(2+()2+…+()2=,并求()2+()2+…+()2的值.

证明:比较(1+x)n·(1+x)n=(1+x)2n两边x的系数.

左边xn的系数为

·+·+·+…+·,

右边xn的系数为

·+·+…+·=

=

∴()2+()2+…+()2=

∴()2+()2+…+()2==252.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=(1+
1
n
)x
(n∈N,且n>1,x∈N).
(Ⅰ)当x=6时,求(1+
1
n
)x
的展开式中二项式系数最大的项;
(Ⅱ)对任意的实数x,证明
f(2x)+f(2)
2
>f'(x)(f'(x)是f(x)的导函数);
(Ⅲ)是否存在a∈N,使得an<
n
k-1
(1+
1
k
)
<(a+1)n恒成立?若存在,试证明你的结论并求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明“
n2+n
<n+1 (n∈N*)”.第二步证n=k+1时(n=1已验证,n=k已假设成立),这样证明:
(k+1)2+(k+1)
=
k2+3k+2
k2+4k+4
=(k+1)+1,所以当n=k+1时,命题正确.此种证法(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步验证的表达式为
21+1≥12+1+2(22≥4或4≥4也算对)
21+1≥12+1+2(22≥4或4≥4也算对)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=-1,an+1=(1+cos2
2
)an+sin2
2
,n∈N*

(1)求a2,a3,a4;并证明:a2m+1+2=2(a2m-1+2),m∈N*
(2)设fn(x)=
1
2
+rcos[(a1+2)x]+r2cos[(a3+2)x]+r3cos[(a5+2)x]+…+rn-1cos[(a2n-3+2)x]
(n≥2,n∈N*
①证明:对任意x∈R,当|r|≤
1
2
时,rcos[(a1+2)x]+r2cos[(a3+2)x]≥-
3
8

②证明:当|r|≤
1
2
,f2n+1(x)对任意x∈R和自然数n(n≥2)都有f2n+1(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+ln(x+1)
x
(x>0)

(Ⅰ)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(Ⅱ)当x>0时,f(x)>
k
x+1
恒成立,求整数k的最大值;
(Ⅲ)试证明:(1+1•2)•(1+2•3)•(1+3•4)•…•(1+n(n+1))>e2n-3

查看答案和解析>>

同步练习册答案