精英家教网 > 高中数学 > 题目详情
f(x)=2cos2x+3sin2x+a(a为实常数)在区间[0,]上的最小值为-4,那么a的值等于(    )

A.4                 B.-6                 C.-4               D.-3

C  ∵f(x)=1+cos2x+sin2x+a=2sin(2x+)+a+1,

∵x∈[0,],

∴2x+∈[].

∴f(x)的最小值为2×()+a+1=-4.

∴a=-4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•韶关一模)已知函数f(x)=2cos2ωx+2
3
sinωxcosωx-1(ω>0)的最小正周期为π.
(1)求f(
π
3
)的值;
(2)求函数f(x)的单调递增区间及其图象的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小正周期是
π
2

(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)若f(x)-a2>2a在x∈[0,
π
8
]
上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2ωx-1+2
3
cosωxsinωx(0<ω<1),直线x=
π
3
是f(x)图象的一条对称轴.
(Ⅰ)试求ω的值;
(Ⅱ)若函数y=g(x)的图象是由y=f(x)图象上的各点的横坐标伸长到原来的2倍,然后再向左平移
3
个单位长度得到,求函数g(x)在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B,C所对应的边分别为a,b,c,若
a-c
b-c
=
sinB
sinA+sinC

(I)求角A的大小;
(II)若f(x)=2cos2(x+A)+cos(2x-2A),求y=f(x)的最小正周期与单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)(1)已知△ABC中,角A,B,C的对边分别是a,b,c,
AB
AC
=3,a=2
5
,b+c=6,求cosA.
(2)设f(x)=-2cos2
π
8
x+sin(
π
4
x-
π
6
)+1,当x∈[-
2
3
,0]时,求y=f(x)的最大值.

查看答案和解析>>

同步练习册答案