精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1,     x>0
0,     x=0
-1,   x<0
,若g(x)=(x-2)2f(x-1),y=g(x)的反函数y=g-1(x),则g(3)•g-1(1)的值为(  )
分析:f(x)为分段函数,要求g(3)•g-1(1)可以先求g(3),代入g(x)=(x-2)2f(x-1),根据分段函数的性质即可求得,再求g-1(1)相当于求方程(x-2)2f(x-1)=1,求出x的值;
解答:解:∵函数f(x)=
1,     x>0
0,     x=0
-1,   x<0
,若g(x)=(x-2)2f(x-1),
∴g(3)=(3-2)2f(2)=f(2)=1;
要求g-1(1),y=g(x)的反函数y=g-1(x),
∴可得方程(x-2)2f(x-1)=1,
当x=1时,f(x-1)=f(0)=0,显然不可能;(x-2)2≥0,∴f(x-1)≠-1,即x≥0
若(x-2)2=1,可得x=3或x=1(舍去),
当x=3时,(3-2)2f(2)=1,满足,∴g-1(1)=3,
∴g(3)•g-1(1)=3,
故选D;
点评:此题主要考查函数的值的求法以及反函数的定义,难度中等,考查的知识点比较全面,是一道好题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
-1,x>0
1,x<0
,则
(a+b)-(a-b)f(a-b)
2
(a≠b)的值是(  )
A、aB、b
C、a,b中较小的数D、a,b中较大的数

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-x
1+x
的反函数为h(x),又函数g(x)与h(x+1)的图象关于有线y=x对称,则g(2)的值为(  )
A、-
4
3
B、-
1
3
C、-1
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
 
1-x2
,(|x|≤1)
|x|,(|x|>1)
,若方程f(x)=a有且只有一个实根,则实数a满足(  )
A、a<0B、0≤a<1
C、a=1D、a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1+x2
1-x2

①求它的定义域;
②求证:f(
1
x
)=-f(x)

③判断它在(1,+∞)单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北一模)设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式,
(2)设a>O,讨论函数y=f(x)的单调性.

查看答案和解析>>

同步练习册答案