精英家教网 > 高中数学 > 题目详情
19.如图6所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点BD的动点.点FBC边上,且EFAB.现沿EF将△BEF折起到△PEF的位置,使PEAE.记

BExV(x)表示四棱锥P-ACFE的体积.

                      图6

(1)求V(x)的表达式;

(2)当x为何值时,V(x)取得最大值?

(3)当V(x)取得最大值时,求异面直线ACPF所成角的余弦值

解:(1)已知EFAB,那么翻折后,显然有PEEF,又PEAE,从而PE面ACFE,即PE为四棱锥的高。

四棱锥的底面积S=-

而△BEF与△BDC相似,那么

===

则S=-=(1-63=9(1-

故四棱锥的体积V(x)=Sh=9(1- x =3x(1-)(0<x<3)

(2) = 3-x2(0<x<3)

=0得x=6

当x∈(0,6)时,>0,V(x)单调递增;x∈(6,3)时,<0,V(x)单调递减;因此x=6时, V(x)取得最大值。V(x)max= V(6)=12

(3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在等腰△ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′-BCDE,其中A′O=
3

(1)证明:A′O⊥平面BCDE;      
(2)求A′D与平面A′BC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′-BCDE,其中A′O=
3

(1)证明:A′O⊥平面BCDE;
(2)求二面角A′-CD-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在等腰△ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′-BCDE.若A′O⊥平面BCDE,则A′D与平面A′BC所成角的正弦值等于(  )
精英家教网
A、
2
3
B、
3
3
C、
2
2
D、
2
4

查看答案和解析>>

科目:高中数学 来源:2013年普通高等学校招生全国统一考试广东卷理数 题型:044

如图(1),在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=,O为BC的中点.将△ADE沿DE折起,得到如图(2)所示的四棱锥,其中

(Ⅰ)证明:平面BCDE;

(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2013年广东省高考数学试卷(理科)(解析版) 题型:解答题

如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′-BCDE,其中A′O=
(1)证明:A′O⊥平面BCDE;
(2)求二面角A′-CD-B的平面角的余弦值.

查看答案和解析>>

同步练习册答案