精英家教网 > 高中数学 > 题目详情
圆C的极坐标方程为:ρ=2
2
sin(θ+
π
4
)圆C的直角坐标方程(  )
A.(x-1)2+(y-1)2=4B.(x+1)2+(y-1)2=4
C.(x-1)2+(y-1)2=2D.(x+1)2+(y-1)2=2
圆C的极坐标方程为:ρ=2
2
sin(θ+
π
4

即 ρ2=2
2
ρ•sinθ•
2
2
+2
2
cosθ•ρ•
2
2
=2ρsinθ+2ρcosθ,
故有 x2+y2=2y+2x,即(x-1)2+(y-1)2=2,
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线,直线为参数)
写出曲线的参数方程,直线的普通方程;
过曲线上任意一点作与夹角为30°的直线,交于点,求的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l的极坐标方程为ρ(sinθ+cosθ)=1,曲线C的参数方程为(θ为参数).
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B四两点,原点为O,求△ABO的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题



查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C1的极坐标方程为P(2cosθ+5sinθ)-4=0;曲线C2的参数方程为
x=2cosθ
y=2sinθ
(θ为参数),
求(1)曲线C1和曲线C2的普通方程
(2)曲线C1和曲线C2的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(选做题)在直角坐标系xOy中,曲线C1的参数方程为
x=-3t+2
y=4t.
(t
为参数),P为C1上的动点,Q为线段OP的中点.
(Ⅰ)求点Q的轨迹C2的方程;
(Ⅱ)在以O为极点,x轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲线ρ=2sinθ上的动点,M为C2与x轴的交点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆C的极坐标方程为的极坐标
方程为则圆心C到直线l
距离是           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点到定直线的距离比到定点的距离多1,
(I)求动点的轨迹的方程;
(II)设,求曲线上点到点距离的最小值

查看答案和解析>>

同步练习册答案