精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=alnx+ +x(a>0).若曲线y=f(x)在点(1,f(1))处的切线与直线x﹣2y=0垂直, (Ⅰ)求实数a的值;
(Ⅱ)求函数f(x)的单调区间.

【答案】解:(Ⅰ)∵f′x)= +1, ∴f′(1)=﹣2,
∴2a2﹣a﹣3=0,
∵a>0,
∴a=
(Ⅱ)∵f′(x)=
令f′(x)>0,解得:x> ,x<﹣3(舍),
令f′(x)<0,解得:0<x<
∴f(x)在(0, )递减,在( ,+∞)递增
【解析】(1)先求出f′x)= +1,得f′(1)=﹣2,从而求出a的值,(2)先求出函数的导数,解不等式从而求出单调区间.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2 + sin cos . (Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[ ,π],求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,则(
A.f(x)在(0,+∞)上是增函数
B.f(x)在 上是增函数
C.当x∈(0,1)时,f(x)有最小值
D.f(x)在定义域内无极值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中 ①若loga3>logb3,则a>b;
②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);
③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;
④函数 既是奇函数又是减函数.
其中正确的命题有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中a为非零实数),且方程 有且仅有一个实数根. (Ⅰ)求实数a的值;
(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令 ,若函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,求实数r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=﹣ x2+bln(x+2)在区间[﹣1,2]不单调,则b的取值范围是(
A.(﹣∞,﹣1]
B.[8,+∞)
C.(﹣∞,﹣1]∪[8,+∞)
D.(﹣1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ 为定义在R上的奇函数.
(1)试判断函数的单调性,并用定义加以证明;
(2)若关于x的方程f(x)=m在[﹣1,1]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD中平面PAB⊥平面ABCD,底面ABCD是正方形.点M是棱PC的中点
(1)记平面ADM与平面PBC的交线是l,试判断直线l与BC的位置关系,并加以证明.
(2)若 ,求证PB⊥平面ADM,并求直线PC与平面ADM所成角的正弦值.

查看答案和解析>>

同步练习册答案