精英家教网 > 高中数学 > 题目详情
(2007•闵行区一模)(理)已知△ABC顶点的直角坐标分别为A(a,4)、B(0,b)、C(c,0).
(1)若a=3,b=0,c=5,求sinA的值;
(2)若虚数x=2+ai(a>0)是实系数方程x2-cx+5=0的根,且∠A是钝角,求b的取值范围.
分析:(1)利用两个向量的数量积的定义求出cosA的值,再利用同角三角函数的基本关系求出sinA的值.
(2)由题意可得,虚数x=2-ai也是实系数方程x2-cx+5=0的根,由韦达定理得求得a和c的值,由
AB
 •
AC
<0求出
b的取值范围,再从中除去
AB
AC
共线时的b值.
解答:解:(1)∵
AB
=(-3, -4)
AC
=(2, -4)
,(2分)
cosA=
AB
AC
|
AB
||
AC
|
=
-6+16
5•2
5
=
1
5
,且0<A<π,(4分)
sinA=
1-cos2A
=
1-
1
5
=
2
5
5
.(6分)
(2)由题意可得,虚数x=2-ai也是实系数方程x2-cx+5=0的根,
由韦达定理得求得 a=1,c=4.(8分)
AB
=(-1, b-4)
AC
=(3, -4)
,(10分)
∵∠A是钝角,由
AB
AC
=-3-4b+16<0
,解得 b>
13
4
.(12分)
AB
AC
共线时,b=
16
3

故b的取值范围为 {b|b>
13
4
b≠
16
3
}.(14分)
点评:本题考查两个向量的数量积的定义,同角三角函数的基本关系,注意排除当
AB
AC
共线时的情况,这是解题的易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•闵行区一模)已知数列{an}和{bn}的通项公式分别是an=
an2+2
bn2-n+3
bn=(1+
1
n
)bn
,其中a、b是实常数.若
lim
n→∞
an=2
lim
n→∞
bn=e
1
2
,且a,b,c成等比数列,则c的值是
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)已知函数f(x)=Asin(ωx+φ)+B(A>0,0<ω<2,|φ|<
π
2
)
的一系列对应值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根据表格提供的数据求函数y=f(x)的解析式;
(2)(文)当x∈[0,2π]时,求方程f(x)=2B的解.
(3)(理)若对任意的实数a,函数y=f(kx)(k>0),x∈(a,a+
3
]
的图象与直线y=1有且仅有两个不同的交点,又当x∈[0,
π
3
]
时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)设等差数列{an}的前n项和为Sn,若a6+a14=20,则S19=
190
190

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)不等式|2x-3|<5的解是
(-1,4)
(-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)方程9x+3x-2=0的解是
0
0

查看答案和解析>>

同步练习册答案