精英家教网 > 高中数学 > 题目详情
空间直角坐标系O-xyz中,球心坐标为(-2,0,3),半径为4的球面方程是
(x+2)2+y2+(z-3)2=16
(x+2)2+y2+(z-3)2=16
分析:设球面上任间一点P(x,y,z),球心坐标为O(-2,0,3),半径为R=4,由题设条件知|PO|=R,再利用空间两点间的距离公式能求出球面方程.
解答:解:设球面上任间一点P(x,y,z),
∵球心坐标为O(-2,0,3),半径为R=4,
∴|PO|=R,
(x+2)2+(y-0)2+(z-3)2
=4

∴(x+2)2+y2+(z-3)2=16.
故答案为:(x+2)2+y2+(z-3)2=16.
点评:本题考查空间两点间的距离公式和球的概念,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定下列命题:
(1)空间直角坐标系O-XYZ中,点A(-2,3,-1)关于平面XOZ的对称点为A′(-2,-3,-1).
(2)棱长为1的正方体外接球表面积为8π.
(3)已知等比数列{an}的前n项和为Sn,若Sn=2n+c(c为常数),则c=-1.
(4)若非零实数a1,b1,a2,b2满足
a1
a2
=
b1
b2
,则集合{x|a1x+b1>0}={x|a2x+b2>0}.
(5)已知等差数列{an}的前n项和为Sn,则点P1(1,
S1
1
)、P2(2,
S2
2
)、…、Pn(n,
Sn
n
)
(n∈N*)必在同一直线上.
以上正确的命题是
(1)(3)(5)
(1)(3)(5)
(请将你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州模拟)已知空间直角坐标系O-xyz中有一点A(-1,-1,2),点B是xOy平面内的直线x+y=1上的动点,则A,B两点的最短距离是
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区二模)和平面解析几何的观点相同,在空间中,空间曲面可以看作是适合某种条件的动点的轨迹.在空间直角坐标系O-xyz中,空间曲面的方程是一个三元方程F(x,y,z)=0.
设F1、F2为空间中的两个定点,|F1F2|=2c>0,我们将曲面Γ定义为满足|PF1|+|PF2|=2a(a>c)的动点P的轨迹.
(1)试建立一个适当的空间直角坐标系O-xyz,求曲面Γ的方程;
(2)指出和证明曲面Γ的对称性,并画出曲面Γ的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)和平面解析几何的观点相同,在空间中,空间曲面可以看作是适合某种条件的动点的轨迹.一般来说,在空间直角坐标系O-xyz中,空间曲面的方程是一个三元方程F(x,y,z)=0.
(Ⅰ)在直角坐标系O-xyz中,求到定点M0(0,2,-1)的距离为3的动点P的轨迹(球面)方程;
(Ⅱ)如图,设空间有一定点F到一定平面α的距离为常数p>0,即|FM|=2,定义曲面C为到定点F与到定平面α的距离相等(|PF|=|PN|)的动点P的轨迹,试建立适当的空间直角坐标系O-xyz,求曲面C的方程;  
(Ⅲ)请类比平面解析几何中对二次曲线的研究,讨论曲面C的几何性质.并在图中通过画出曲面C与各坐标平面的交线(如果存在)或与坐标平面平行的平面的交线(如果必要)表示曲面C的大致图形.画交线时,请用虚线表示被曲面C自身遮挡部分.

查看答案和解析>>

同步练习册答案