【题目】甲、乙、丙三名乒乓球手进行单打对抗比赛,每两人比赛一场,共赛三场,每场比赛胜者得3分,负者得0分,在每一场比赛中,甲胜乙的概率为
,丙胜甲的概率为
,乙胜丙的概率为
,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为
.
(1)求
的值;
(2)设在该次对抗比赛中,丙得分为
,求
的分布列、数学期望和方差.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,过点
的动圆恒与
轴相切,
为该圆的直径,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的任意直线
与曲线
交于点
,
为
的中点,过点
作
轴的平行线交曲线
于点
,
关于点
的对称点为
,除
以外,直线
与
是否有其它公共点?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设动圆
经过点
,且与圆
为圆心)相内切.
(Ⅰ)求动圆圆心
的轨迹
的方程;
(Ⅱ)设经过
的直线与轨迹
交于
、
两点,且满足
的点
也在轨迹
上,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),圆
与圆
外切于原点
,且两圆圆心的距离
,以坐标原点为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
和圆
的极坐标方程;
(2)过点
的直线
,
与圆
异于点
的交点分别为点
,
,与圆
异于点
的交点分别为点
,
,且
,求四边形面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知圆C过点P(1,1),且与圆M:
关于直线
对称.
(1)求圆C的方程:
(2)设Q为圆C上的一个动点,求
最小值;
(3)过点P作两条相异直线分别与圆C交与A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP与直线AB是否平行?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过椭圆
的四个顶点与坐标轴垂直的四条直线围成的矩形
(
是第一象限内的点)的面积为
,且过椭圆
的右焦点
的倾斜角为
的直线过点
.
(1)求椭圆
的标准方程
(2)若射线
与椭圆
的交点分别为
.当它们的斜率之积为
时,试问
的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:
)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) | [0.6,0.7) |
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) |
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;
![]()
(2)估计该家庭使用节水龙头后,日用水量小于0.3
的概率;
(3)估计该家庭用节水龙头后,一年能节省多少水.(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com