【题目】已知某企业的近3年的前7个月的月利润(单位:百万元)如下面的折线图所示: ![]()
(1)试问这3年的前7个月中哪个月的月平均利润较高?
(2)通过计算判断这3年的前7个月的总利润的发展趋势;
(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.
月份x | 1 | 2 | 3 | 4 |
利润y(单位:百万元) | 4 | 4 | 6 | 6 |
相关公式:
=
=
,
=
﹣
x.
科目:高中数学 来源: 题型:
【题目】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”. ![]()
(1)完成下面2×2列联表,
空间想象能力突出 | 空间想象能力正常 | 合计 | |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
|
(2)判断是否有90%的把握认为“空间想象能力突出”与性别有关;
(3)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望. 下面公式及临界值表仅供参考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,已知椭圆
的左焦点为F,离心率为
,过点F且垂直于长轴的弦长为
.
(I)求椭圆C的标准方程;
(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.
(i)求证:∠AFM=∠BFN;
(ii)求△MNF面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,Sn=2an+1 , 其中Sn为{an}的前n项和(n∈N*).
(Ⅰ)求S1 , S2及数列{Sn}的通项公式;
(Ⅱ)若数列{bn}满足
,且{bn}的前n项和为Tn , 求证:当n≥2时,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. ![]()
根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中圆C的参数方程为
(α为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为
.
(1)求圆C的直角坐标方程及其圆心C的直角坐标;
(2)设直线l与曲线C交于A,B两点,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知中心在原点,焦点在x轴上的椭圆的一个焦点为(
,0),(1,
)是椭圆上的一个点. ![]()
(1)求椭圆的标准方程;
(2)设椭圆的上、下顶点分别为A,B,P(x0 , y0)(x0≠0)是椭圆上异于A,B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l:y=﹣1于点C,N为线段BC的中点,如果△MON的面积为
,求y0的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点
,且经过点
,点M是x轴上的一点,过点M的直线l与椭圆C交于A,B两点(点A在x轴的上方) ![]()
(1)求椭圆C的方程;
(2)若|AM|=2|MB|,且直线l与圆
相切于点N,求|MN|的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com