精英家教网 > 高中数学 > 题目详情
如图,在正四棱锥P-ABCD中,AB=PA=
2

(1)求直线PA与底面ABCD所成角的大小;
(2)求点A到平面PBC的距离.
分析:(1)先作出底面ABCD的垂线,可知AO为斜线PA在底面的射影,线面角的定义可知∠PAO为斜线与底面所成的角,然后再直角三角形内求其角的度数即可;
(2)利用棱锥等体积求高的办法,就可以求出点A到面PBC的距离.
解答:解:由题意知
连接AC、BD相交于O点,再连接PO
(1)∵四棱锥P-ABCD为正四棱锥
∴OP⊥面ABCD
∴AO为斜线PA在底面ABCD上的射影
    即∠PAO为斜线PA与底面ABCD所成的角
 又∵PA=
2
,OP=OA=1
∴△POA为等腰直角三角形
∴∠PAO=45°
故直线PA与底面ABCD所成角的大小为45°.
(2)设点A到平面PBC的距离为h
  根据等体积求高法:VA-PBC=VP-ABC
1
3
hS△PBC=
1
3
|OP|S△ABC

∴h=
2
3
3

故点A到平面PBC的距离
2
3
3
点评:本题主要考查线面角的求法,及利用棱锥等体积求高法,求点到面的距离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱锥P-ABCD中,PA=AB=a,点E在棱PC上.
(1)问点E在何处时,PA∥平面EBD,并加以证明;
(2)求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、如图,在正四棱锥P-ABCD中,点M为棱AB的中点,点N为棱PC上的点.
(1)若PN=NC,求证:MN∥平面PAD;
(2)试写出(1)的逆命题,并判断其真假.若为真,请证明;若为假,请举反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱锥P-ABCD中,若
S△PBD
S△PAD
=
6
2
,则二面角P-BC-A等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)如图,在正四棱锥P-ABCD中,已知PA=AB=
2
,点M为PA中点,求直线BM与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱锥P-ABCD中,∠APC=60°,则二面角A-PB-C的平面角的余弦值为(  )

查看答案和解析>>

同步练习册答案