直线l垂直于梯形ABCD的两腰AB和CD,直线m垂直于AD和BC,则l与m的位置关系是( )
A.相交
B.平行
C.异面
D.不确定
【答案】
分析:作出如图所示的直四棱柱,分别找出或作出符合条件的直线l、m,即可判断出结论.
解答:解:如图所示:直四棱柱ABCD-A
1B
1C
1D
1中,

取棱AA
1为直线l,则l⊥AB,l⊥CD.
①若取棱D
1D为直线m,则m⊥AD,m⊥BC,满足条件,此时m∥l;
②过点A作AM⊥BC,∵AD∥BC,∴AM⊥AD,取直线AM为m,则满足条件,此时l与m相交;
③过线段AD上除去点A以外的点E作EF∥AM,则EF⊥AD,EF⊥BC,取EF为直线m,则满足条件,此时l与m为异面直线.
综上可知:l与m的位置关系是平行、相交或异面直线,因此其位置关系不确定.
故选D.
点评:作出直四棱柱,熟练掌握空间中直线的位置关系是解题的关键.