已知椭圆
=1(a>b>0)的离心率为
,且过点P
,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,![]()
过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
科目:高中数学 来源: 题型:解答题
如图,椭圆
经过点
,其左、右顶点分别是
、
,左、右焦点分别是
、
,
(异于
、
)是椭圆上的动点,连接
交直线
于
、
两点,若
成等比数列.![]()
(1)求此椭圆的离心率;
(2)求证:以线段
为直径的圆过点
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆C:
=1(a>b>0)的离心率为
,其左焦点到点P(2,1)的距离为
.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.![]()
(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M.![]()
(1)求证:A、M、B三点的横坐标成等差数列;
(2)设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.![]()
(1)求点B的轨迹方程;
(2)当点D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆C上的另一个动点,且满足FG⊥FE,记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.![]()
(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左、右焦点分别为
、
, 焦距为2,过
作垂直于椭圆长轴的弦长
为3
(1)求椭圆的方程;
(2)若过点
的动直线
交椭圆于A、B两点,判断是否存在直线
使得
为钝角,若存在,求出直线
的斜率
的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是椭圆
的两个焦点,
为坐标原点,点
在椭圆上,且
,⊙
是以
为直径的圆,直线
:
与⊙
相切,并且与椭圆交于不同的两点![]()
![]()
(1)求椭圆的标准方程;
(2)当
,且满足
时,求弦长
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com