【题目】已知函数
.
(Ⅰ) 当
时,求函数
的单调区间;
(Ⅱ)求函数
在区间
上的最大值.
【答案】(Ⅰ)
的单调递增区间为
,单调递减区间为
.(Ⅱ) 见解析
【解析】
(Ⅰ)当
时,求得函数的导数
,利用导函数取值的正负,即可得出函数的单调性;
(Ⅱ)由 (Ⅰ)知
,分类讨论得到函数在区间
上的单调性,即可求解函数的最大值,得到答案。
(Ⅰ)由题意,当
时,函数
,
则
,
令
,即
,即
,解得
或
,
所以函数
在
,
上单调递增,
令
,即
,即
,解得
,
所以函数
在
上单调递减。
即函数
的单调递增区间为
,
的单调递减区间为
.
(Ⅱ) 由函数
,则
,
令
,即
,即
,解得
或
,
(1)当
,即
时,此时当
时,
,所以
在
上单调递减,所以最大值为
;
(2)当
,即
时,
①当
时,即
时,此时当
时,
,所以
在
上单调递减,所以最大值为
;
②当
时,即
时,此时当
时,
,所以
在
上单调递增,当
时,
,所以
在
上单调递减,所以最大值为
;
③当
时,即
时,此时当
时,
,所以
在
上单调递增,所以最大值为
;
(3)当
时,函数
在区间
上单调递减,最大值为
,
综上所述,可得:
当
时,
;
当
时,
;
当
时,
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的一个焦点为
,点
在椭圆
上.
(Ⅰ)求椭圆
的方程与离心率;
(Ⅱ)设椭圆
上不与
点重合的两点
,
关于原点
对称,直线
,
分别交
轴于
,
两点.求证:以
为直径的圆被
轴截得的弦长是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥
的底面
为直角梯形,
,
,
,
为正三角形.
![]()
(1)点
为棱
上一点,若
平面
,
,求实数
的值;
(2)求点B到平面SAD的距离.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)由
平面
,可证
,进而证得四边形
为平行四边形,根据
,可得
;
(2)利用等体积法
可求点
到平面
的距离.
试题解析:((1)因为
平面SDM,
![]()
平面ABCD,
平面SDM
平面ABCD=DM,
所以
,
因为
,所以四边形BCDM为平行四边形,又
,所以M为AB的中点.
因为
,
.
![]()
(2)因为
,
,
所以
平面
,
又因为
平面
,
所以平面
平面
,
平面
平面
,
在平面
内过点
作
直线
于点
,则
平面
,
在
和
中,
因为
,所以
,
又由题知
,
所以
,
由已知求得
,所以
,
连接BD,则
,
又求得
的面积为
,
所以由
点B 到平面
的距离为
.
【题型】解答题
【结束】
19
【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪
(单位:元)与送货单数
的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在
时,日平均派送量为
单.
若将频率视为概率,回答下列问题:
![]()
①根据以上数据,设每名派送员的日薪为
(单位:元),试分别求出甲、乙两种方案的日薪
的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:
,
,
,
,
,
,
,
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,离心率
,点
在椭圆上.
![]()
(1)求椭圆C的标准方程;
(2)设点P是椭圆C上一点,左顶点为A,上顶点为B,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学导师计划从自己所培养的研究生甲、乙两人中选一人,参加雄安新区某部门组织的计算机技能大赛,两人以往5次的比赛成绩统计如下:(满分100分,单位:分).
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成绩 | 87 | 87 | 84 | 100 | 92 |
乙的成绩 | 100 | 80 | 85 | 95 | 90 |
(1)试比较甲、乙二人谁的成绩更稳定;
(2)在一次考试中若两人成绩之差的绝对值不大于2,则称两人“实力相当”.若从上述5次成绩中任意抽取2次,求恰有一次两人“实力相当”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌服装店五一进行促销活动,店老板为了扩大品牌的知名度同时增强活动的趣味性,约定打折办法如下:有两个不透明袋子,一个袋中放着编号为1,2,3的三个小球,另一个袋中放着编号为4,5的两个小球(小球除编号外其它都相同),顾客需从两个袋中各抽一个小球,两球的编号之和即为该顾客买衣服所打的折数(如,一位顾客抽得的两个小球的编号分别为2,5,则该顾客所习的买衣服打7折).要求每位顾客先确定购买衣服后再取球确定打折数.已知
三位顾客各买了一件衣服.
(1)求三位顾客中恰有两位顾客的衣服均打6折的概率;
(2)
两位顾客都选了定价为2000元的一件衣服,设
为打折后两位顾客的消费总额,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设
为椭圆
上任一点,
为其右焦点,
是椭圆的左、右顶点,点
满足
.
①证明:
为定值;
②设
是直线
上的任一点,直线
分别另交椭圆
于
两点,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】—般地,若函数
的定义域为
,值域为
,则称
为
的“
倍跟随区间”;特别地,若函数
的定义域为
,值域也为
,则称
为
的“跟随区间”.下列结论正确的是( )
A.若
为
的跟随区间,则![]()
B.函数
不存在跟随区间
C.若函数
存在跟随区间,则![]()
D.二次函数
存在“3倍跟随区间”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com