科目:高中数学 来源: 题型:
| a |
| x |
| 1 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
已知
是定义在[-1,1]上的奇函数,且
,若任意的
,当
时,总有
.
(1)判断函数
在[-1,1]上的单调性,并证明你的结论;
(2)解不等式:
;
(3)若
对所有的
恒成立,其中
(
是常数),求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省高一第四次月考数学试卷(解析版) 题型:解答题
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
(1)判断函数
是否是有界函数,请写出详细判断过程;
(2)试证明:设
,若
在
上分别以
为上界,
求证:函数
在
上以
为上界;
(3)若函数
在
上是以3为上界的有界函数,
求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届北京五中高一第一学期期中考试数学试卷 题型:解答题
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
(1)判断函数
是否是有界函数,请写出详细判断过程;
(2)试证明:设
,若
在
上分别以
为上界,
求证:函数
在
上以
为上界;
(3)若函数
在
上是以3为上界的有界函数,
求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com