精英家教网 > 高中数学 > 题目详情
|x-a|<
h
2
,|y-b|<
h
2
,则下列不等式一定成立的是(  )
分析:本选择题利用直接法解决.由题意分别由两个绝对值不等式,根据绝对值不等式的运算性质,利用两个同向不等式相加即可得出正确选项.
解答:解:∵|x-a|<
h
2
,|y-b|<
h
2
 
根据不等式的性质 得:
|x+y-a-b|≤|x-a|+|y-b|<
h
2
+
h
2
=h,|x-y-a+b|≤|x-a|+|y-b|<
h
2
+
h
2
=h,
∴A正确,
故选A.
点评:本题考查绝对值不等式的解法以及不等式性质的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+
x3
3
…+
x2m-1
2m-1
,g(x)=
x2
2
+
x4
4
…+
x2n
2n
,定义域为R,m,n∈N,h1(x)=c+f(x)-g(x),h2(x)=c-f(x)+g(x)
(1)若n=1,m=2,求h1(x)的单调区间;若n=2,m=2,求h2(x)的最小值.
(2)(文科选做)若m=n,c=0时,令T(n)=h2(1),求T(n)的最大值.
    (理科选做)若m=n,c=0时,令T(n)=h1(1),求证:T(n)=
1
n+1
+
1
n+2
+…+
1
2n

(3)若m=n+1,c=1时,F(x)=h1(x+3)h2(x-2)且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x+
x3
3
…+
x2m-1
2m-1
,g(x)=
x2
2
+
x4
4
…+
x2n
2n
,定义域为R,m,n∈N,h1(x)=c+f(x)-g(x),h2(x)=c-f(x)+g(x)
(1)若n=1,m=2,求h1(x)的单调区间;若n=2,m=2,求h2(x)的最小值.
(2)(文科选做)若m=n,c=0时,令T(n)=h2(1),求T(n)的最大值.
    (理科选做)若m=n,c=0时,令T(n)=h1(1),求证:T(n)=
1
n+1
+
1
n+2
+…+
1
2n

(3)若m=n+1,c=1时,F(x)=h1(x+3)h2(x-2)且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,求b-a的最小值.

查看答案和解析>>

同步练习册答案