(1)求证:A1C⊥平面AEF;
(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角).则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.
试根据上述定理,在AB=4,AD=3,AA1=5时,求平面AEF与平面D1B1BD所成角的大小.(用反三角函数值表示)
![]()
| (1)证明:因为CB⊥平面A1B,所以A1C在平面A1B上的射影为A1B.
由A1B⊥AE,AE 同理可证A1C⊥AF. 因为A1C⊥AF,A1C⊥AE, 所以A1C⊥平面AEF. (2)解:过A作BD的垂线交CD于G,因为D1D⊥AG,所以AG⊥平面D1B1BD. 设AG与A1C所成的角为α,则α即为平面AEF与平面D1B1BD所成的角. 由已知,计算得DG= 如图建立直角坐标系,则得点A(0,0,0),G( C(4,3,0). AG={ 因为AG与A1C所成的角为α, 所以cosα= 由定理知,平面AEF与平面D1B1BD所成角的大小为arccos 注:没有学习向量知识的同学可用以下的方法求二面角的平面角. 解法一:设AG与BD交于M,则AM⊥面BB1D1span>D,再作AN⊥EF交EF于N,连接MN,则∠ANM即为面AEF与D1B1BD所成的角α,用平面几何的知识可求出AM、AN的长度. 解法二:用面积射影定理cosα=
|
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
![]()
A.
B.
C.
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
![]()
A.
B.
C.
D.1
查看答案和解析>>
科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题
(文科做)(本题满分14分)如图,在长方体
ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1—EC-D的大小为
.
![]()
(理科做)(本题满分14分)
如图,在直三棱柱ABC – A1B1C1中,∠ACB = 90°,CB = 1,
CA =
,AA1 =
,M为侧棱CC1上一点,AM⊥BA1.
(Ⅰ)求证:AM⊥平面A1BC;
(Ⅱ)求二面角B – AM – C的大小;
(Ⅲ)求点C到平面ABM的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com