【题目】已知椭圆
的四个顶点围成的菱形的面积为
,椭圆的一个焦点为
.
(1)求椭圆的方程;
(2)若
,
为椭圆上的两个动点,直线
,
的斜率分别为
,
,当
时,
的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
【答案】(1)
(2)是,定值
.
【解析】
(1)由题设条件,列出方程组,结合
,求得
的值,即可求解.
(2)设
,
,当直线
的斜率存在时,设方程为
,联立方程组,结合根与系数的关系和弦长公式,及三角形的面积公式,求得三角形的面积;当直线
的斜率不存在时,结合椭圆的对称性和三角形的面积公式,即可求解.
(1)由椭圆
的四个顶点围成的菱形的面积为
,椭圆的一个焦点为
,
可得
,
,即
,解得
,
,
故椭圆的方程为
.
(2)设
,
,
当直线
的斜率存在时,设方程为
,
由
,消
可得,
,
则![]()
,即
,
且
,
,
所以![]()
![]()
.
又由点
到直线
的距离
,
所以![]()
.
又因为
,
所以![]()
,
化简整理可得
,满足
,
代入
,
当直线
的斜率不存在时,由于
,
考虑到
,
关于
轴对称,不妨设
,
,
则点
,
的坐标分别为
,
,
此时
,
综上可得,
的面积为定值
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,以
轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆
的方程为
被圆
截得的弦长为
.
(Ⅰ)求实数
的值;
(Ⅱ)设圆
与直线
交于点
,若点
的坐标为
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,其焦距为
,点E为椭圆的上顶点,且
.
(1)求椭圆C的方程;
(2)设圆
的切线l交椭圆C于A,B两点(O为坐标原点),求证
;
(3)在(2)的条件下,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l至11kg)频数分布表如下(单位: kg):
分组 | | | | | |
频数 | 10 | 15 | 45 | 20 | 10 |
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量
近似服从正态分布
,其中
近似为样本平均数
近似为样本方差
.请估算该种植园内水果质量在
内的百分比;
(2)现在从质量为
的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量
的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为
元,求
的分布列及数学期望.
附:
,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①分类变量
与
的随机变量
越大,说明“
与
有关系”的可信度越大;
②以模型
去拟合一组数据时,为了求出回归方程,设
,将其变换后得到线性方程
,则
,
的值分别是
和
;
③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
④若变量
和
满足关系
,且变量
与
正相关,则
与
也正相关.
正确的个数是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
组别 |
|
|
|
|
|
|
|
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
;
(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:
(i)得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
(ii)每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
|
|
现市民小王要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列及数学期望.
附:①
;
②若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节期间爆发的新型冠状病毒(COVID-19)是新中国成立以来感染人数最多的一次疫情.一个不知道自己已感染但处于潜伏期的甲从疫区回到某市过春节,回到家乡后与朋友乙、丙、丁相聚过,最终乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假设他受甲和受乙感染的概率分别是
和
.丁是受甲、乙或丙感染的,假设他受甲、乙和丙感染的概率分别是
、
和
.在这种假设之下,乙、丙、丁中直接受甲感染的人数为
.
(1)求
的分布列和数学期望;
(2)该市在发现在本地出现新冠病毒感染者后,迅速采取应急措施,其中一项措施是各区必须每天及时,上报新增疑似病例人数.
区上报的连续
天新增疑似病例数据是“总体均值为
,中位数
”,
区上报的连续
天新增疑似病例数据是“总体均值为
,总体方差为
”.设
区和
区连续
天上报新增疑似病例人数分别为
和
,
和
分别表示
区和
区第
天上报新增疑似病例人数(
和
均为非负).记
,
.
①试比较
和
的大小;
②求
和
中较小的那个字母所对应的
个数有多少组?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的结构如图所示,开口为正六边形ABCDEF,侧棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且与平面ABCDEF垂直,蜂房底部由三个全等的菱形构成.瑞士数学家克尼格利用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此,有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林通过计算得到∠B′C′D′=109°28′16'.已知一个房中BB'=5
,AB=2
,tan54°44′08'
,则此蜂房的表面积是_____.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com