精英家教网 > 高中数学 > 题目详情
精英家教网已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
12
,AB=1.
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成角的余弦值.
分析:(I)由已知中PA⊥底面ABCD,CD⊥AD,我们由三垂线定理,得CD⊥PD,结合线面垂直判定定理,可以得到CD⊥平面PAD,进而由面面垂直的判定定理,可以得到面PAD⊥面PCD;
(II)过点B作BE∥CA,且BE=CA,连接AE.则∠PBE是AC与PB所成的角,解三角形PBE,即可得到AC与PB所成角的余弦值.
解答:精英家教网解:(I)证明:∵PA⊥底面ABCD,CD⊥AD,
∴由三垂线定理,得CD⊥PD,
∵CD⊥AD,CD⊥PD,且PD∩AD=D,
∴CD⊥平面PAD,
∵CD?平面PCD,
∴面PAD⊥面PCD.
(II)过点B作BE∥CA,且BE=CA,连接AE.
则∠PBE是AC与PB所成的角,(5分)
可求得AC=CB=BE=EA=
2
.(6分)
又AB=2,所以四边形ACBE为正方形,∴BE⊥AE,
∵PA⊥底面ABCD.∴PA⊥BE,
∴BE⊥面PAE.
∴BE⊥PE,即∠PEB=90°
在Rt△PAB中,得PB=
5
.(9分)
在Rt△PEB中,cos∠PBE=
BE
PB
=
10
5
.(14分)
点评:本题考查的知识点是平面与平面垂直的判定,异面直线及其所成的角,求异面直线夹角时,通过平移将问题转化为解三角形问题是解答这类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案