精英家教网 > 高中数学 > 题目详情

【必做题】

在平面直角坐标系中,动点到直线的距离与它到点的距离之比为

(1)求动点的轨迹的方程;

(2)过点作垂直于轴的直线,求轨迹轴及直线围成的封闭图形的面积.

⑴设,由题意有,化简得

即动点的轨迹的方程为.                   ………………4分

⑵当时,,即.             ………………6分

设所求的图形的面积为,则

=

故所求的封闭图形的面积.                    ………………10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
),若直线l过点P,且倾斜角为 
π
3
,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【必做题】

在平面直角坐标系中,动点到直线的距离与它到点的距离之比为

(1)求动点的轨迹的方程;

(2)过点作垂直于轴的直线,求轨迹轴及直线围成的封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南通市海门中学高三(上)开学检测数学试卷(解析版) 题型:解答题

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆+=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,),若直线l过点P,且倾斜角为 ,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南通市海门中学高三(上)开学检测数学试卷(解析版) 题型:解答题

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆+=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,),若直线l过点P,且倾斜角为 ,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>

同步练习册答案