精英家教网 > 高中数学 > 题目详情

【题目】已知点P是长轴长为 的椭圆Q: 上异于顶点的一个动点,O为坐标原点,A为椭圆的右顶点,点M为线段PA的中点,且直线PA与OM的斜率之积恒为
(1)求椭圆Q的方程;
(2)设过左焦点F1且不与坐标轴垂直的直线l交椭圆于C,D两点,线段CD的垂直平分线与x轴交于点G,点G横坐标的取值范围是 ,求|CD|的最小值.

【答案】
(1)解:∵椭圆Q的长轴长为 ,∴

设P(x0,y0),

∵直线PA与OM的斜率之积恒为 ,∴

,∴b=1,

故椭圆的方程为


(2)解:设直线l方程为y=k(x+1)(k≠0),代入 有(1+2k2)x2+4k2x+2k2﹣2=0,

设A(x1,y1),B(x2,y2),AB中点N(x0,y0),

∴CD的垂直平分线方程为

令y=0,得

,∴ ,∴ =


【解析】(1)利用椭圆Q的长轴长为 ,求出 .设P(x0 , y0),通过直线PA与OM的斜率之积恒为 ,化简求出b,即可得到椭圆方程.(2)设直线l方程为y=k(x+1)(k≠0),代入 有(1+2k2)x2+4k2x+2k2﹣2=0,设A(x1 , y1),B(x2 , y2),AB中点N(x0 , y0),利用韦达定理求出CD的垂直平分线方程,推出 ,利用弦长公式化简,推出|CD|的最小值.
【考点精析】认真审题,首先需要了解椭圆的标准方程(椭圆标准方程焦点在x轴:,焦点在y轴:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1判断函数是否有零点;

2设函数上是减函数求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知ABC三个顶点坐标为A(78)B(104)C(2,-4)

(1)求BC边上的中线所在直线的方程;

(2)求BC边上的高所在直线的方程.

【答案】(1);(2)

【解析】试题分析:(1)根据中点坐标公式求出中点的坐标,根据斜率公式可求得的斜率,利用点斜式可求边上的中线所在直线的方程;(2)先根据斜率公式求出的斜率,从而求出边上的高所在直线的斜率为,利用点斜式可求边上的高所在直线的方程.

试题解析:1)由B(104)C(2,-4)BC中点D的坐标为(60),

所以AD的斜率为k8

所以BC边上的中线AD所在直线的方程为y08(x6)

8xy480

2)由B(104)C(2,-4)BC所在直线的斜率为k1

所以BC边上的高所在直线的斜率为-1

所以BC边上的高所在直线的方程为y8=-(x7),即xy150

型】解答
束】
17

【题目】已知直线lx2y2m20

(1)求过点(23)且与直线l垂直的直线的方程;

(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 (m>0,n>0),若m+n∈[1,2],则 的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 :“函数 在区间 上单调递减”;命题 :“存在正数 ,使得 成立”,若 为真命题,则 的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等差数列, , 是它的前项和,.

(1)

(2)这个数列的前多少项的和最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出s的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知关于的不等式.

(1)当时,求此不等式的解集.

(2)求关于的不等式(其中)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生1 000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100名同学,如果以身高达165 cm作为达标的标准,对抽取的100名学生,得到以下列联表:

身高达标

身高不达标

总计

经常参加体育锻炼

40

不经常参加体育锻炼

15

总计

100


(1)完成上表;
(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?

查看答案和解析>>

同步练习册答案