精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项均是正数,其前n项和为Sn,满足(p-1)Sn=p2-an,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)设bn=logpan(n∈N*),设数列{bn}的前n项和为Tn,求Tn的最大值.
分析:(1)由题可得(p-1)an=(p-1)(Sn-Sn-1)=p2-an-(p2-an-1)=an-1-an(n≥2),整理得pan=an-1,判定为等比数列,求出a1后,即可求出通项公式.
(2)bn=logpan=logp(
1
p
)n-2=2-n
,易知从第三项起为负数,或求出Tn不等式从函数角度求最值.
解答:解:(1)由题可得:(p-1)an=(p-1)(Sn-Sn-1)=p2-an-(p2-an-1)=an-1-an
整理得:pan=an-1,∵p>0.
an
an-1
=
1
p
,又(p-1)S1=p2-a1,可得a1=p,
所以数列{an}是以
1
p
为首项,以p为公比的等比数列,
通项公式an=p•(
1
p
)n-1=(
1
p
)n-2

(2)bn=logpan=logp(
1
p
)n-2=2-n

(方法一)由bn=2-n≥0⇒n≤2,即当n=1或2时,Tn有最大值1.
(方法二)Tn=(2-1)+(2-2)+…+(2-n)=2n-(1+2+…n)=2n-
n(1+n)
2
=
-n2+3n
2
=-
1
2
(n-
3
2
)2+
9
8

即当n=1或2时,Tn有最大值1.
点评:本题考查等比数列的判定,通项公式求解.考查变形构造,转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2.已知数列{an}的通项公式是an=
2n
3n+1
(n∈N*,n≤8)
,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中数学 来源:江西省赣县中学2011届高三适应性考试数学理科试题 题型:013

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是

[  ]
A.

8

B.

16

C.

32

D.

36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

例2.已知数列{an}的通项公式是数学公式,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)数学公式(2)数学公式

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第6章 数列):6.1 数列定义与通项(解析版) 题型:解答题

例2.已知数列{an}的通项公式是,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步练习册答案