精英家教网 > 高中数学 > 题目详情
正三棱锥P-ABC中,M,N是侧棱PB、PC的中点,若截面AMN垂直于侧面PBC,求棱锥的侧面积与底面积的比.
分析:画出图形,说明棱锥的棱长等于底面三角形的高,设出高,然后求出侧面面积,底面面积即可得到比值.
解答:解:取MN的中点H,连接PH交BC于E,连接AE、AH,因为正三棱锥P-ABC中,所以PA=PB=PC,M,N是侧棱PB、PC的中点,所以AH⊥MN,
截面AMN垂直于侧面PBC,所以BC⊥平面PAE,
∴AH是PE的垂直平分线.所以,PA=AE
设PA=a,所以AB=
2
3
a
3

棱锥的侧面积为:
1
2
×
2
3
a
3
×
a2-(
3
a
3
)
2
=
2
a2
底面面积为:
3
4
(
2
3
a
3
)
2
=
3
3
a2
棱锥的侧面积与底面积的比:
2
3
3
=
6
点评:本题考查空间几何体的想象能力,逻辑推理能力与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在正三棱锥P-ABC中,M、N分别是侧棱PB、PC的中点,若截面AMN⊥侧面PBC,则此三棱锥的侧棱与底面所成角的正切值是.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,三条侧棱两两垂直,且侧棱长为a,则点P到平面ABC的距离为
3
3
a
3
3
a

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•镇江一模)在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个结论:①AC⊥PB; ②AC∥平面PDE;③AB⊥平面PDE.则所有正确结论的序号是
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,E、F分别是PA、AB的中点,若∠CEF=90°,且AB=
2
,则三棱锥P-ABC外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步练习册答案