【题目】设函数f(x)=2cos2x+sin2x+a(a∈R).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当
时,f(x)的最大值为2,求a的值,并求出y=f(x)(x∈R)的对称轴方程.
【答案】
(1)解:f(x)=1+cos2x+sin2x+a=
sin(2x+
)+1+a,
∵ω=2,∴T=π,
∴f(x)的最小正周期π;
当2kπ﹣
≤2x+
≤2kπ+
(k∈Z)时f(x)单调递增,
解得:kπ﹣
≤x≤kπ+
(k∈Z),
则x∈[kπ﹣
,kπ+
](k∈Z)为f(x)的单调递增区间;
(2)解:当x∈[0,
]时,
≤2x+
≤
,
当2x+
=
,即x=
时,sin(2x+
)=1,
则f(x)max=
+1+a=2,
解得:a=1﹣
,
令2x+
=kπ+
(k∈Z),得到x=
+
(k∈Z)为f(x)的对称轴.
【解析】(1)函数f(x)解析式第一项利用二倍角的余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值代入周期公式即可求出函数的最小正周期;由正弦函数的单调递增区间为[2kπ﹣
,2kπ+
](k∈Z)求出x的范围即为函数的递增区间;(2)由x的范围求出这个角的范围,利用正弦函数的单调性求出正弦函数的最大值,表示出函数的最大值,由已知最大值求出a的值即可,令这个角等于kπ+
(k∈Z),求出x的值,即可确定出对称轴方程.
【考点精析】掌握两角和与差的正弦公式和二倍角的余弦公式是解答本题的根本,需要知道两角和与差的正弦公式:
;二倍角的余弦公式:
.
科目:高中数学 来源: 题型:
【题目】某学校为了解该校高三年级学生数学科学习情况,对广一模考试数学成绩进行分析,从中抽取了n 名学生的成绩作为样本进行统计(该校全体学生的成绩均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分组作出频率分布直方图如图1所示,样本中分数在[70,90)内的所有数据的茎叶图如图2所示. ![]()
根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表( c ).
分数 | [50,85] | [85,110] | [110,150] |
可能被录取院校层次 | 专科 | 本科 | 重本 |
(1)求n和频率分布直方图中的x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3 人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3 名学生进行调研,用ξ表示所抽取的3 名学生中为重本的人数,求随机变量ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线C:y2=3px(p≥0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC中,AB=AC,D为△ABC外接圆劣弧
上的点(不与点A,C重合),延长BD至E,延长AD交BC的延长线于F. ![]()
(1)求证:∠CDF=∠EDF;
(2)求证:ABACDF=ADFCFB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
+
=1(a>b>0)过点
,且离心率e为
.
(1)求椭圆E的方程;
(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G
与以线段AB为直径的圆的位置关系,并说明理由. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com