已知函数
(m为常数,且m>0)有极大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率为-5的直线是曲线
的切线,求此直线方程.
解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,则x=-m或x=
m,
当x变化时,f’(x)与f(x)的变化情况如下表:x (-∞,-m) -m (-m,
)![]()
(
,+∞)f’(x)
+0 - 0 + f (x) 极大值 极小值
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,依题意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-
.
又f(-1)=6,f(-
)=
,所以切线方程为y-6=-5(x+1),或y-
=-5(x+
),
即5x+y-1=0,或135x+27y-23=0.
解析
科目:高中数学 来源:2014届河南省毕业班阶段测试一文数学卷(解析版) 题型:解答题
已知函数
(m为常数,e=2.71828…是自然对数的底数),函数
的最小值为1,其中
是函数f(x)的导数.
(1)求m的值.
(2)判断直线y=e是否为曲线f(x)的切线,若是,试求出切点坐标和函数f(x)的单调区间;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省成都市高三第二次诊断性检测文科数学试卷(解析版) 题型:选择题
已知函数
(m为常数),对任意的
恒成立.有下列说法:
①m=3;
②若
(b为常数)的图象关于直线x=1对称,则b=1;
③已知定义在R上的函数F(x)对任意x均有
成立,且当
时,
;又函数
(c为常数),若存在
使得
成立,则c的取值范围是(一1,13).
其中说法正确的个数是
(A)3 个 (B)2 个 (C)1 个 (D)O 个
查看答案和解析>>
科目:高中数学 来源:2010年河南省郑州外国语学校高二下学期期中考试数学卷(理) 题型:解答题
(本小题12分)已知函数
(m为常数,m>0)有极大值9.
(1)求m的值;
(2)若斜率为-5的直线是曲线
的切线,求此直线方程.
查看答案和解析>>
科目:高中数学 来源:2010年广东省高考冲刺强化训练试卷八文科数学 题型:解答题
(本小题满分12分) 已知函数
(m为常数,且m>0)有极大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率为
的直线是曲线
的切线,求此直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com