【题目】已知函数
.
(1)求
的最小正周期;
(2)求
的值域;
(3)求
的递增区间
(4)求
的对称轴;
(5)求
的对称中心;
(6)
的三边a,b,c满足
,且b所对的角为x,求x的取值范围及函数
的值域.
【答案】(1)
;(2)
;(3)
;(4)直线
;(5)对称中心
;(6)
,值域为![]()
【解析】
对于(1)——(5)根据题意,对
进行三角恒等变换,化简成
,然后即可求出
的各种性质;
对于(6),通过余弦定理和基本不等式的性质,可求得
的取值范围,进而可求出
的值域;
根据题意,
,进行化简,
![]()
![]()
,据此可得,
(1)
的最小正周期为
;
答案:![]()
(2)
的值域为
;
答案:![]()
(3)
的递增区间为
,化简得
,所以,
的递增区间为![]()
答案:![]()
(4)对于
,令
,化简得
,即
的对称轴为直线![]()
答案:直线![]()
(5)对于
,令
,化简得,
,所以,对称中心为
;
答案:对称中心![]()
(6) 对于
的三边a,b,c满足
①,且b所对的角为x,
,
根据余弦定理得,
②,
由①和②得
,
即
,所以,
,对于
,
可知,
,则
;
答案:
,值域为![]()
科目:高中数学 来源: 题型:
【题目】下列叙述错误的是( )
A.已知直线
和平面
,若点
,点
且
,
,则![]()
B.若三条直线两两相交,则三条直线确定一个平面
C.若直线
不平行于平面
,且
,则
内的所有直线与
都不相交
D.若直线
和
不平行,且
,
,
,则l至少与
,
中的一条相交
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果
的定义域为
,对于定义域内的任意
,存在实数
使得
成立,则称此函数具有“
性质”.给出下列命题:
①函数
具有“
性质”;
②若奇函数
具有“
性质”,且
,则
;
③若函数
具有“
性质”,图象关于点
成中心对称,且在
上单调递减,则
在
上单调递减,在
上单调递增;
④若不恒为零的函数
同时具有“
性质”和“
性质”,且函数
对
,都有
成立,则函数
是周期函数.
其中正确的是__________(写出所有正确命题的编号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+1+|3-x|,x≥-1.
(1)求不等式f(x)≤6的解集;
(2)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
为偶函数,且函数
图象的两相邻对称轴间的距离为
.
(1)求
的值;
(2)将函数
的图象向右平移
个单位后,再将得到的图象上各点的横坐标伸长到原来的
倍,纵坐标不变,得到函数
的图象,求
的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.
![]()
(1)求此人到达当日空气重度污染的概率;
(2)设X是此人停留期间空气重度污染的天数,求X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代的数学名著,书中有如下间题:“今有甲、乙、丙、丁、戊五人分五饯,令上二人所得与下三人等,且五人所得钱按顺序等次差,问各得几何?”其意思为“甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱(钱:古代一种重量单位)?”这个问题中丙所得为( )
A.
钱 B.
钱 C. 1钱 D.
钱
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长度为
的线段
的两个端点
、
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率不为零的直线
与曲线
交于两点
、
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数.若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com