精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2+ax+1x-1
(a≠-2)
的图象关于点(b,1)对称.
(I)求a的值;
(II)求函数f(x)的单调区间;
(II)设函数g(x)=x3-3c2x-2c(c≤-1).若对任意x1∈[2,4],总存在x2∈[-1,0],使得f(x1)=g(x2)成立,求c的取值范围.
分析:(I)f(x)=
x2+ax+1
x-1
(a≠-2)
=x-1+
a+2
x-1
+a+2,由y=x+
a+2
x
(a≠2)的图象有一个唯一的对称中心(0,0),f(x)的对称中心是(b,1),能求出a.
(II)由a=-1,b=1,知f(x)=
x2-x+1
x-1
.f(x)=
(2x-1)(x-1)-(x2-x+1)
(x-1)2
=
x(x-2)
(x-1)2
,由此能求出函数f(x)的单调区间.
(Ⅲ)由g(x)=x3-3c2x-2c(c≤-1),得g′(x)=3x2-3c2=3(x2-c2),由对任意x1∈[2,4],总存在x2∈[-1,0],使得f(x1)=g(x2)成立推导出-2c≤3<
13
3
≤3c2-2c-1
,其中c≤-1.由此能求出c的取值范围.
解答:解:(I)∵f(x)=
x2+ax+1
x-1
(a≠-2)

=
(x-1)2+(a+2)x
x-1

=x-1+
a+2
x-1
+a+2,
∵y=x+
a+2
x
,(a≠2)的图象有一个唯一的对称中心(0,0),
∴f(x)有唯一一个对称中心(1,a+2),
∵f(x)的对称中心是(b,1),∴a=-1,b=1.
故a=-1.
(II)∵a=-1,b=1,∴f(x)=
x2-x+1
x-1

f(x)=
(2x-1)(x-1)-(x2-x+1)
(x-1)2
=
x(x-2)
(x-1)2

列表讨论:
 x  (-∞,0)  0 (0,1)  1  (1,2)  2  (2,+∞)
 f′(x) +  0 -  不存在 - 0 +
 f(x) -1  不存在  3
∴函数f(x)的增区间为(-∞,0)和(2,+∞),减区间为(0,1)和(1,2).
(Ⅲ)由g(x)=x3-3c2x-2c(c≤-1),得
g′(x)=3x2-3c2=3(x2-c2),
当x2∈[-1,0]时,g′(x2)≤0,
∴g(x2)∈[g(0),g(-1)].即g(x2)∈(-2c,-2c-1),
∵f(x)在[2,4]上是增区数,f(2)=3,f(4)=
13
3

f(x1)∈[3,
13
3
]

∵任意x1∈[2,4],总存在x2∈[-1,0],使得f(x1)=g(x2)成立,
∴-2c≤3<
13
3
≤3c2-2c-1
,其中c≤-1.
-2c≤3
c≤-1
3c2-2c-
16
3
≥0
,解得-
3
2
≤c≤
1-
17
3

故c的取值范围是[-
3
2
1-
17
3
].
点评:本题考查函数的对称中心的应用,考查函数的单调区间的求法,考查满足条件的实数的取值范围的求法,解题时要认真审题,注意导数性质、等价转化思想、分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案