【题目】已知动点
是圆
:
上的任意一点,点
与点
的连线段的垂直平分线和
相交于点
.
(I)求点
的轨迹
方程;
(II)过坐标原点
的直线
交轨迹
于点
,
两点,直线
与坐标轴不重合.
是轨迹
上的一点,若
的面积是4,试问直线
,
的斜率之积是否为定值,若是,求出此定值,否则,说明理由.
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球
和1个白球
的甲箱与装有2个红球
和2个白球
的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.
(Ⅰ)用球的标号列出所有可能的摸出结果;
(Ⅱ)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
PD.
![]()
(I)证明:PQ⊥平面DCQ;
(II)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的四棱锥
中,底面
与侧面
垂直,且四边形
为正方形,
,点
为边
的中点,点
在边
上,且
,过
,
,
三点的截面与平面
的交线为
,则异面直线
与
所成的角为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数z=2m+(4-m2)i,其中i为虚数单位,当实数m取何值时,复数z对应的点:
(1)位于虚轴上;
(2)位于一、三象限;
(3)位于以原点为圆心,以4为半径的圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,直线
经过抛物线
的焦点,且垂直于抛物线的对称轴,
与抛物线两交点间的距离为4.
(1)求抛物线
的方程;
(2)已知
,过
的直线
与抛物线
相交于
两点,设直线
与
的斜率分别为
和
,求证:
为定值,并求出定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关线性回归分析的四个命题:
①线性回归直线必过样本数据的中心点(
);
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数
时,两个变量正相关;
④如果两个变量的相关性越强,则相关性系数
就越接近于
.
其中真命题的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
患三高疾病 | 不患三高疾病 | 合计 | |
男 | 6 | 30 | |
女 | |||
合计 | 36 |
(1)请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽
人,其中女性抽多少人?
(2)为了研究三高疾病是否与性别有关,请计算出统计量
,并说明你有多大的把握认为三高疾病与性别有关?
下面的临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式
,其中
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com