【题目】如图是九江市2019年4月至2020年3月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r=0.83,则下列结论错误的是( )
![]()
A.每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关
B.月温差(月最高气温﹣月最低气温)的最大值出现在10月
C.9﹣12月的月温差相对于5﹣8月,波动性更大
D.每月最高气温与最低气温的平均值在前6个月逐月增加
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知
是曲线
(
为参数)上的动点,将
绕点
顺时针旋转90°得到
,设点
的轨迹为曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
的极坐标方程;
(2)在极坐标系中,直线
与曲线
分别相交于异于极点
的
两点,点
,当
时,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点
作圆
的切线
,已知
,
分别为切点,直线
恰好经过椭圆的右焦点和下顶点,则直线
方程为___________;椭圆的标准方程是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
.
(1)曲线
:
与
相交于
,
两点,
为
上异于
,
的点,若直线
的斜率为1,求直线
的斜率;
(2)若
的左焦点为
,右顶点为
,直线
:
.过
的直线
与
相交于
,
(
在第一象限)两点,与
相交于
,是否存在
使
的面积等于
的面积与
的面积之和.若存在,求直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,CM,CN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的A,B处设置观景台,记BC=a,AC=b,AB=c(单位:百米)
![]()
(1)若a,b,c成等差数列,且公差为4,求b的值;
(2)已知AB=12,记∠ABC=θ,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
年上半年,随着新冠肺炎疫情在全球蔓延,全球超过
个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为
年第一季度企业成立年限与倒闭分布情况统计表:
企业成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企业成立年限 | 1 | 2 | 3 | 4 | 5 |
倒闭企业数量(万家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒闭企业所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根据上表,给出两种回归模型:
模型①:建立曲线型回归模型
,求得回归方程为
;
模型②:建立线性回归模型
.
(1)根据所给的统计量,求模型②中
关于
的回归方程;
(2)根据下列表格中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测
年成立的企业中倒闭企业所占比例(结果保留整数).
回归模型 | 模型① | 模型② |
回归方程 |
|
|
|
|
参考公式:
,
;
.
参考数据:
,
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱柱ABC﹣A1B1C1的底面边长为
,且该三棱柱外接球的表面积为14π,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com