精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,求函数在点处的切线方程;

(2)对任意的函数恒成立,求实数的取值范围.

【答案】(1) ;(2) .

【解析】试题分析:(1)代入函数解析式,求导后得到函数在点处的切线的斜率,然后利用直线方程的点斜式得答案;(2)由,求出函数的导函数导函数在处,的导数为零,然后由导函数的导函数在上大于零求得的范围就是满足函数恒成立的实数的取值范围.

试题解析:(1)当时,

,则

函数在点处的切线方程 为

(2)

易知,,则

时,由恒成立,

上单调递增, 符合题意。所以

时,由恒成立,上单调递减,

显然不成立,舍去。

时,由,得

因为,所以时,恒成立,

上单调递减,显然不成立,舍去。

综上可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 的二项展开式中所有奇数项的系数之和为512,
(1)求展开式的所有有理项(指数为整数).
(2)求(1﹣x)3+(1﹣x)4+…+(1﹣x)n展开式中x2项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设偶函数f(x)的定义域为[﹣4,0)∪(0,4],若当x∈(0,4]时,f(x)=log2x,
(1)求出函数在定义域[﹣4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )
A.某厂一批产品的次品率为 , 则任意抽取其中10件产品一定会发现一件次品
B.气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨
C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈
D.掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆为参数和直线 其中为参数, 为直线的倾斜角.

(1)当时,求圆上的点到直线的距离的最小值;

(2)当直线与圆有公共点时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且的图象在处的切线与曲相切,符合情况的切线

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga +x)(其中a>1).
(1)判断函数y=f(x)的奇偶性,并说明理由;
(2)判断 (其中m,n∈R,且m+n≠0)的正负,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=logax,y=logbx,y=logcx,y=logdx的图象如图所示,则a,b,c,d的大小顺序是( )

A.1<d<c<a<b
B.c<d<1<a<b
C.c<d<1<b<a
D.d<c<1<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内一动点与两定点连线的斜率之积等于.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)设直线 )与轨迹交于两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

同步练习册答案