【题目】设
为给定的大于2的正整数,集合
,已知数列
:
,
,…,
满足条件:
①当
时,
;
②当
时,
.
如果对于
,有
,则称
为数列
的一个逆序对.记数列
的所有逆序对的个数为
.
(1)若
,写出所有可能的数列
;
(2)若
,求数列
的个数;
(3)对于满足条件的一切数列
,求所有
的算术平均值.
【答案】(1)不同的
分别为:
;(2)
;(3)
.
【解析】
(1)根据
可列出满足条件的
.
(2)就构成逆序对的元素的个数分类计数可得满足条件的
的个数.
(3)引进一个定义:
,有
,则称
为数列
的一个顺序对,可证明所有的
中,逆序对的总数和顺序对的总数相等,从而可得逆序对的个数为
,故可求其平均值.
(1)因为
, 故
只有一个逆序对,
则不同的
分别为:
.
(2)因为
,故数列
:
,
,…,
有两种情况:
①2对逆序数由3个元素提供,即
,
这样的
共有
个.
②2对逆序数由4个元素提供,即
.
这样的
共有
.
综上,满足
的数列
的个数为
.
(3)对任意的
:
,
,…,
,其逆序对的个数为
,
我们引进一个定义:
,有
,则称
为数列
的一个顺序对,
则
中的顺序对个数为
.
考虑
:
,
,…,
与
:
,
,…,
,
中的逆序对的个数为
中顺序对的个数,
中顺序对的个数为
中逆序对个数,
把所有的
按如上形式两两分类,则可得所有的
中,逆序对的总数和顺序对的总数相等,而它们的和为
,故逆序对的个数为
,
所以所有
的算术平均值为
.
科目:高中数学 来源: 题型:
【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.
(1)请将列联表填写完整:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 27 | ||
无武汉旅行史 | 18 | ||
总计 | 27 | 54 |
(2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?
附:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
(
),其上一点
到
的焦点
的距离为4.
(Ⅰ)求抛物线
的方程;
(Ⅱ)过点
的直线
与抛物线
分別交于
,
两点(点
,
均在
轴的上方),若
的面积为4,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:
,
,
,…
后得到如下频率分布直方图.
![]()
(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分、众数、中位数;(小数点后保留一位有效数字)
(2)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
,
分别为椭圆
的焦点,直线
:
与
轴交于
点,若
,且
.
![]()
(1)求椭圆的方程;
(2)过
,
作互相垂直的两直线分别与椭圆交于
,
,
,
四点,求四边形
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.
(1)根据题意,请将下面的
列联表填写完整;
选择“西游传说” | 选择“千古蝶恋” | 总计 | |
成年人 | |||
未成年人 | |||
总计 |
(2)根据列联表的数据,判断是否有
的把握认为选择哪个主题公园与年龄有关.
附参考公式与表:
(
).
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由共青团中央宣传部、中共山东省委宣传部、共青团山东省委、山东广播电视台联合出品的《国学小名士》第三季于2019年11月24日晚在山东卫视首播.本期最精彩的节目是
的飞花令:出题者依次给出
所含数字3.141592653……答题者则需要说出含有此数字的诗句.雷海为、杨强、马博文、张益铭与飞花令少女贺莉然同场
,赛况激烈让人屏住呼吸,最终
的飞花令突破204位.某校某班级开元旦联欢会,同学们也举行了一场
的飞花令,为了增加趣味性,他们的规则如下:答题者先掷两个骰子,得到的点数分别记为
,再取出
的小数点后第
位和第
位的数字,然后说出含有这两个数字的一个诗句,若能说出则可获得奖品.按照这个规则,取出的两个数字相同的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为改进服务质量,在进场购物的顾客中随机抽取了
人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:
满意 | 不满意 | |
男 |
|
|
女 |
|
|
是否有
的把握认为顾客购物体验的满意度与性别有关?
若在购物体验满意的问卷顾客中按照性别分层抽取了
人发放价值
元的购物券.若在获得了
元购物券的
人中随机抽取
人赠其纪念品,求获得纪念品的
人中仅有
人是女顾客的概率.
附表及公式:
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com