精英家教网 > 高中数学 > 题目详情

【题目】为给定的大于2的正整数,集合,已知数列,…,满足条件:

①当时,

②当时,.

如果对于,有,则称为数列的一个逆序对.记数列的所有逆序对的个数为.

1)若,写出所有可能的数列

2)若,求数列的个数;

3)对于满足条件的一切数列,求所有的算术平均值.

【答案】1)不同的分别为:;(2;(3.

【解析】

1)根据可列出满足条件的.

2)就构成逆序对的元素的个数分类计数可得满足条件的的个数.

(3)引进一个定义:,有,则称为数列的一个顺序对,可证明所有的中,逆序对的总数和顺序对的总数相等,从而可得逆序对的个数为,故可求其平均值.

1)因为, 故只有一个逆序对,

则不同的分别为:.

2)因为,故数列,…,有两种情况:

①2对逆序数由3个元素提供,即

这样的共有个.

②2对逆序数由4个元素提供,即

.

这样的共有.

综上,满足的数列的个数为.

3)对任意的,…,,其逆序对的个数为

我们引进一个定义:,有,则称为数列的一个顺序对,

中的顺序对个数为.

考虑,…,,…,

中的逆序对的个数为中顺序对的个数,中顺序对的个数为中逆序对个数,

把所有的按如上形式两两分类,则可得所有的中,逆序对的总数和顺序对的总数相等,而它们的和为,故逆序对的个数为

所以所有的算术平均值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.

1)请将列联表填写完整:

有接触史

无接触史

总计

有武汉旅行史

27

无武汉旅行史

18

总计

27

54

2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),其上一点的焦点的距离为4.

(Ⅰ)求抛物线的方程;

(Ⅱ)过点的直线与抛物线分別交于两点(点均在轴的上方),若的面积为4,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: ,…后得到如下频率分布直方图.

(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分、众数、中位数;(小数点后保留一位有效数字)

(2)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,分别为椭圆的焦点,直线轴交于点,若,且.

1)求椭圆的方程;

2)过作互相垂直的两直线分别与椭圆交于四点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20.

1)根据题意,请将下面的列联表填写完整;

选择“西游传说”

选择“千古蝶恋”

总计

成年人

未成年人

总计

2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.

附参考公式与表:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由共青团中央宣传部、中共山东省委宣传部、共青团山东省委、山东广播电视台联合出品的《国学小名士》第三季于20191124日晚在山东卫视首播.本期最精彩的节目是的飞花令:出题者依次给出所含数字3.141592653……答题者则需要说出含有此数字的诗句.雷海为、杨强、马博文、张益铭与飞花令少女贺莉然同场,赛况激烈让人屏住呼吸,最终的飞花令突破204.某校某班级开元旦联欢会,同学们也举行了一场的飞花令,为了增加趣味性,他们的规则如下:答题者先掷两个骰子,得到的点数分别记为,再取出的小数点后第位和第位的数字,然后说出含有这两个数字的一个诗句,若能说出则可获得奖品.按照这个规则,取出的两个数字相同的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:

满意

不满意

是否有的把握认为顾客购物体验的满意度与性别有关?

若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.

附表及公式:

查看答案和解析>>

同步练习册答案