精英家教网 > 高中数学 > 题目详情
a
=(2cosωx,
3
sinωx),
b
=(cosωx,2cosωx)(w>0),函数f(x)=
a
b
的最小正周期为π:
(Ⅰ) 求f(x)的单调增区间
(Ⅱ) 在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=2,b=1,△ABC的面积为
3
2
,求
b+c
sinB+sinC
的值.
分析:(Ⅰ) 利用斜率的数量积已经二倍角公式两角和的正弦函数化简函数的表达式,利用函数的周期求出ω,通过正弦函数的单调增区间求解f(x)的单调增区间.
(Ⅱ) 在△ABC中,a、b、c分别是角A、B、C的对边,利用f(A)=2结合(Ⅰ)求出A,通过b=1,△ABC的面积为
3
2
,求出c,利用余弦定理求出a,通过正弦定理求
b+c
sinB+sinC
的值.
解答:解(Ⅰ)函数f(x)=
a
b
=(2cosωx,
3
sinωx)•(cosωx,2cosωx)
=2cos2ωx+2
3
sinωxcosωx
=2sin(2ωx+
π
6
)+1.
∴T=
,ω=1,
∴f(x)=2sin(2x+
π
6
)+1,…(3分)
∵2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
kπ-
π
3
≤x≤kπ+
π
6
    k∈Z
f(x)的单调增区间[kπ-
π
3
,kπ+
π
6
]k∈Z….(6分)
(Ⅱ)∵在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,
∴2sin(2A+
π
6
)+1=2,
∴sin(2A+
π
6
)=
1
2

2A+
π
6
=
6

∴A=
π
3

∴S△ABC=
1
2
bcsinA=
3
2
,∵b=1
∴c=2.
由余弦定理a2=b2+c2-2bccosA⇒a=
3

由正弦定理
a
sinA
=
b
sinB
 =
c
sinC
a+c
sinA+sinC
=2
…..(12分)
点评:本题是中档题,考查三角函数的化简求值,斜率的数量积的应用,正弦定理与余弦定理的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

[选做题]本题包括A、B、C、D共4小题,请从这4小题中选做2小题,每小题10分,共20分.
A.如图,AD是∠BAD的角平分线,⊙O过点A且与BC边相切于点D,与AB,AC分别交于E、F两点.求证:EF∥BC.
B.已知M=
.
1-2
3-7
.
,求M-1
C.已知直线l的极坐标方程为θ=
π
4
(ρ∈R),它与曲线C
x=1+2cosα
y=2+2sinα
(α为参数)相较于A、B两点,求AB的长.
D.设函数f(x)=|x-2|+|x+2|,若不等式|a+b|-|4a-b|≤|a|,f(x)对任意a,b∈R,且a≠0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(cosωx,2cosωx),
b
=(2cosωx,sinωx)(x∈R,ω>0),已知函数f(x)=
a
b
+1的最小正周期是
π
2

(1)求ω的值;
(2)求f(x)的最大值,并求出f(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•三明模拟)(1)选修4-2:矩阵与变换
设矩阵M=
1a
b1

(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C':x2-2y2=1,求a+b的值.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(α为参数),点Q极坐标为(2,
4
)

(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
设函数f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若关于x的不等式f(x)≥4的解集为A,求集合A.

查看答案和解析>>

科目:高中数学 来源:高考总复习全解 数学 一轮复习·必修课程 (人教实验版) B版 人教实验版 B版 题型:044

设函数f(x)=a·b,其中向量a=(2cos x,1),b=(cos x,sin 2x),x∈R.

(1)若f(x)=1-,且x∈[-],求x;

(2)若函数y=2sin 2x的图象按向量c=(m,n)平移后得到函数y=f(x)的图象,求实数m、n的值.

查看答案和解析>>

同步练习册答案