【题目】判断下列命题是全称量词命题还是存在量词命题.
(1)梯形的对角线相等;
(2)存在一个四边形有外接圆
(3)二次函数的图象都与x轴相交;
(4)存在一对实数x,y,使
成立
科目:高中数学 来源: 题型:
【题目】下面几个命题中,假命题是( )
A. “若
,则
”的否命题
B. “
,函数
在定义域内单调递增”的否定
C. “
是函数
的一个周期”或“
是函数
的一个周期”
D. “
”是“
”的必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好体育,得到表:
![]()
参照附表,得到的正确结论是
![]()
附:由公式算得:![]()
附表:
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 1.323 | 2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 有
以上的把握认为“爱好体育运动与性别有关”
B. 有
以上的把握认为“爱好体育运动与性别无关”
C. 在犯错误的概率不超过
的前提下,认为“爱好体育运动与性别有关”
D. 在犯错误的概率不超过
的前提下,认为“爱好体育运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥
(如图1)的平面展开图(如图2)中,四边形
为边长等于
的正方形,
和
均为正三角形,在三棱锥
中:
![]()
![]()
(1)证明:平面
平面
;
(2)若点
在棱
上运动,当直线
与平面
所成的角最大时,求二面角
的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知![]()
.
(1)当函数
在
上的最大值为3时,求
的值;
(2)在(1)的条件下,若对任意的
,函数
,
的图像与直线
有且仅有两个不同的交点,试确定
的值.并求函数
在
上的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
![]()
(1)证明:MN∥平面C1DE;
(2)求AM与平面A1MD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标平面内,每个点绕原点按逆时针方向旋转
的变换
所对应的矩阵为
,每个点横、纵坐标分别变为原来的
倍的变换
所对应的矩阵为
.
(I)求矩阵
的逆矩阵
;
(Ⅱ)求曲线
先在变换
作用下,然后在变换
作用下得到的曲线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com