【题目】已知函数f(x)=|x+1|﹣|2x﹣3|.![]()
(Ⅰ)在图中画出y=f(x)的图象;
(Ⅱ)求不等式|f(x)|>1的解集.
【答案】解:(Ⅰ)f(x)=
,
由分段函数的图象画法,可得f(x)的图象,如下:![]()
(Ⅱ)由|f(x)|>1,可得
当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;
当﹣1<x<
时,|3x﹣2|>1,解得x>1或x<
,
即有﹣1<x<
或1<x<
;
当x≥
时,|4﹣x|>1,解得x>5或x<3,即有x>5或
≤x<3.
综上可得,x<
或1<x<3或x>5.
则|f(x)|>1的解集为(﹣∞,
)∪(1,3)∪(5,+∞).
【解析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<
时,当x≥
时,解绝对值不等式,取交集,最后求并集即可得到所求解集.
科目:高中数学 来源: 题型:
【题目】函数f(x)=
的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是( )
A.a>1
B.a≤﹣ ![]()
C.a≥1或a<﹣ ![]()
D.a>1或a≤﹣ ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为( ) ![]()
A.10000立方尺
B.11000立方尺
C.12000立方尺
D.13000立方尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是( )
A.(4,2018)
B.(4,2020)
C.(3,2020)
D.(2,2020)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC
(1)求角C大小;
(2)求
sinA﹣cos(B+
)的最大值,并求取得最大值时角A,B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读如图所示的程序框图,则该算法的功能是( ) ![]()
A.计算数列{2n﹣1}前5项的和
B.计算数列{2n﹣1}前6项的和
C.计算数列{2n﹣1}前5项的和
D.计算数列{2n﹣1}前6项的和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com