【题目】如图,在正四棱台
中,
,
分别是
的中点.
![]()
(1)求证:平面
平面
;
(2)求证:
平面
.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)由题设条件,先证明
平面
,
平面
,进而得到平面
平面
;
(2)先由题设条件证明:
平面
,进而得到平面
平面
,由
,得到
平面
,故
,结合条件即得证.
(1)如下图,连接
,交
于点
,连接
,分别交
于点
,连接
.
![]()
、
分别为
、
的中点,
,
因为
平面
,
平面
,所以
平面
.
又
,所以
,
又
分别是
的中点,
,
所以
,所以
.
又
,所以
,所以四边形
为平行四边形,所以
.
因为
平面
,
平面
,所以
平面
,
因为
,所以平面
平面
.
(2)连接
,
,
,
![]()
因为
,所以四边形
为平行四边形.
因为
,所以四边形
为菱形,所以
.
因为
平面
,
平面
,所以平面
平面
,
平面
平面
,因为
,
平面
,
所以
平面
.
因为
平面
,所以
.
因为
,所以
平面
.
科目:高中数学 来源: 题型:
【题目】2021年广东新高考将实行“
”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共选六科参加高考.其中偏理方向是二选一时选物理,偏文方向是二选一时选历史,对后四科选择没有限定.
(1)小明随机选课,求他选择偏理方向及生物学科的概率;
(2)小明、小吴同时随机选课,约定选择偏理方向及生物学科,求他们选课相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2019·朝鲜中学]在如图所示的程序框图中,有这样一个执行框
,其中的函数关系式为
,程序框图中的
为函数
的定义域.
![]()
(1)若输入
,请写出输出的所有
的值;
(2)若输出的所有
都相等,试求输入的初始值
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为
从中任意取出 3件进行检验,求至少有
件是合格品的概率;
(2)若厂家发给商家
件产品,其中有
不合格,按合同规定 商家从这
件产品中任取
件,都进行检验,只有
件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)( )
A.2寸B.3寸C.4寸D.5寸
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年国际山地旅游大会于10月14日在贵州召开,据统计有来自全世界的4000名女性和6000名男性徒步爱好者参与徒步运动,其中抵达终点的女性与男性徒步爱好者分别为1000名和2000名,抵达终点的徒步爱好者可获得纪念品一份。若记者随机电话采访参与本次徒步运动的1名女性和1名男性徒步爱好者,其中恰好有1名徒步爱好者获得纪念品的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com