精英家教网 > 高中数学 > 题目详情

在区间[-1,3]上的最大值是                   

A.-2                        B.0                            C.2                            D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x2-4ax+3a2)(a>0,a≠1).
(I)求函数f(x)的定义域;
(II)若f(x)在区间[a+2,a+3]上满足|f(x)|≤1,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在区间[m,n]上的两个函数f(x)和g(x),如果对任意的x∈[m,n],均有不等式|f(x)-g(x)|≤1成立,则称函数f(x)与g(x)在[m,n]上是“友好”的,否则称“不友好”的.现在有两个函数f(x)=loga(x-3a)与g(x)=loga
1x-a
(a>0,a≠1),给定区间[a+2,a+3].
(1)若f(x)与g(x)在区间[a+2,a+3]上都有意义,求a的取值范围;
(2)讨论函数f(x)与g(x)在区间[a+2,a+3]上是否“友好”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x∈(0,+∞)时,f(x)=ax+2lnx,(a∈R)
(1)求f(x)的解析式;
(2)是否存在负实数a,使得当x∈[-e,0)时,f(x)的最小值是4?如果存在,求出a的值;如果不存在,请说明理由.
(3)对x∈D如果函数F(x)的图象在函数G(x)的图象的下方,则称函数F(x)在D上被函数G(x)覆盖.求证:若a=1时,函数f(x)在区间x∈(1,+∞)上被函数g(x)=x3覆盖.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是R上的偶函数,且f(x)=f(2-x),如果f(x)在[1,2]上是减函数,那么f(x)在区间[-2,-1]和[3,4]上分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年四校联考二理) 已知定义在实数集R上的函数是实数

(Ⅰ)若函数在区间上都是增函数,在区间(-1,3)上是减函数,并且求函数的表达式;

(Ⅱ)若,求证:函数是单调函数

查看答案和解析>>

同步练习册答案