(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列
,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数
,公比为正整数
的无穷等比数列
的子数列问题. 为此,他任取了其中三项
.
(1) 若
成等比数列,求
之间满足的等量关系;
(2) 他猜想:“在上述数列
中存在一个子数列
是等差数列”,为此,他研究了
与
的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数
,公差为正整数
的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.
(1)
;(2)不成立;(3) 对于首项为正整数
,公差为正整数
的无穷等差数列
,总可以找到一个无穷子数列
,使得
是一个等比数列.
【解析】
试题分析:(1)由已知可得:
,
1分
则
,即有
,
3分
,化简可得.
. 4分
(2)
,又
,
故
, 6分
由于
是正整数,且
,则
,
又
是满足
的正整数,则
,
,
所以,
>
,从而上述猜想不成立.
10分
(3)命题:对于首项为正整数
,公差为正整数
的无穷等差数列
,总可以找到一个无穷子数列
,使得
是一个等比数列. 13分
此命题是真命题,下面我们给出证明.
证法一: 只要证明对任意正整数n,
都在数列{an}中.因为bn=a(1+d)n=a(1+
d+
d2+…+
dn)=a(Md+1),这里M=
+
d+…+
dn-1为正整数,所以a(Md+1)=a+aMd是{an}中的第aM+1项,证毕. 18分
证法二:首项为
,公差为
(
)的等差数列为
,考虑数列
中的项: ![]()
依次取数列
中项
,
,
,则由
,可知
,并由数学归纳法可知,数列
为
的无穷等比子数列. 18分
考点:等比数列的简单性质;数列的综合应用。
点评:此题考查了等差数列的性质即通项公式,同时本题属于新定义及结论探索性问题,这类试题的一般解法是:充分抓住已知条件,找准问题的突破点,由浅入深,多角度、多侧面探寻,联系符合题设的有关知识,合理组合发现新结论,围绕所探究的结论环环相扣,步步逼近发现规律,得出结论.熟练掌握公式及性质是解本题的关键.
科目:高中数学 来源: 题型:
(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)
若数列
满足:
是常数),则称数列
为二阶线性递推数列,且定义方程
为数列
的特征方程,方程的根称为特征根; 数列
的通项公式
均可用特征根求得:
①若方程
有两相异实根
,则数列通项可以写成
,(其中
是待定常数);
②若方程
有两相同实根
,则数列通项可以写成
,(其中
是待定常数);
再利用
可求得
,进而求得
.
根据上述结论求下列问题:
(1)当
,
(
)时,求数列
的通项公式;
(2)当
,
(
)时,求数列
的通项公式;
(3)当
,
(
)时,记
,若
能被数
整除,求所有满足条件的正整数
的取值集合.
查看答案和解析>>
科目:高中数学 来源:2011届上海市卢湾区高三上学期期末数学理卷 题型:解答题
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.
已知负数
和正数
,且对任意的正整数n,当
≥0时, 有[
,
]=
[
,
];当
<0时, 有[
,
]= [
, ![]()
].
(1)求证数列{
}是等比数列;
(2)若
,求证![]()
;
(3)是否存在
,使得数列
为常数数列?请说明理由
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题
(本题满分18分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点
到其准线的距离等于5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆
交于A、C、D、B四点,试证明
为定值;
(Ⅲ)过A、B分别作抛物C的切线
且
交于点M,求
与
面积之和的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市青浦区高三上学期期终学习质量调研测试数学试卷 题型:解答题
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设
,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数
的所有排列,将每种排列都视为一个有穷数列
.
(1)若
,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列
的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列
,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试数学文 题型:解答题
(本题满分18分,其中第1小题6分,第2小题6分,第3小题6分)
已知数列
的首项为1,前
项和为
,且满足
,
.数列
满足
.
(1) 求数列
的通项公式;
(2) 当
时,试比较
与
的大小,并说明理由;
(3) 试判断:当
时,向量![]()
是否可能恰为直线![]()
的方向向量?请说明你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com