精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的公比q≠1,a1=3,且3a2、2a3、a4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=21og3an,求证:数列{bn}成等差数列;
(3)是否存在非零整数λ,使不等式.对一切,n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.
【答案】分析:(1)直接由3a2、2a3、a4成等差数列列式求出公比q的值,则数列{an}的通项公式可求;
(2)把数列{an}的通项公式代入bn=21og3an整理即可得到结论;
(3)令,则不等式等价于(-1)n+1λ<cn,作比后得到数列{cn}的单调性,分n的奇偶性求出数列{cn}的最小值,从而得到结论.
解答:解:(1)由3a2,2a3,a4 成等差数列,
所以4a3=a4+3a2,即4.∵a1≠0,q≠0,
∴q2-4q+3=0,即(q-1)(q-3)=0.
∵q≠1,∴q=3,
由a1=3,得
(2)∵,∴
得bn-bn-1=2.
∴{bn}是首项为9,公差为2的等差数列;
(3)由bn=2n,
,则不等式等价于(-1)n+1λ<cn
=
∵cn>0,∴cn+1>cn,数列{cn}单调递增.
假设存在这样的实数λ,使的不等式(-1)n+1λ<cn对一切n∈N*都成立,则
①当n为奇数时,得
当n为偶数时,得,即
综上,,由λ是非零整数,知存在λ=±1满足条件.
点评:本题考查了等差数列和等比数列的通项公式,考查了数列的函数特性,考查了数学转化思想方法和分类讨论的数学思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案