精英家教网 > 高中数学 > 题目详情
精英家教网如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=
6

(1)求证:AO⊥平面BCD;
(2)求二面角A-BC-D的余弦值.
分析:(1)欲证AO⊥平面BCD,根据直线与平面垂直的判定定理可知只需证AO与平面BCD内两相交直线垂直,连接OC,而AO⊥BD,AO⊥OC.∵BD∩OC=O,满足定理条件;
(2)过O作OE⊥BC于E,连接AE,根据二面角平面角的定义知∠AEO为二面角A-BC-D的平面角,在Rt△AEO中求出此角即可.
解答:解:(1)证明:连接OC,∵△ABD为等边三角形,O为BD的中点,
∴AO⊥BD.∵△ABD和△CBD为等边三角形,
O为BD的中点,AB=2,AC=
6

AO=CO=
3

在△AOC中,∵AO2+CO2=AC2
∴∠AOC=90o,即AO⊥OC.∵BD∩OC=O,
∴AO⊥平面BCD.
(2)过O作OE⊥BC于E,连接AE,∵AO⊥平面BCD,
∴AE在平面BCD上的射影为OE.
∴AE⊥BC.∴∠AEO为二面角A-BC-D的平面角.
在Rt△AEO中,AO=
3
OE=
3
2

tan∠AEO=
AO
OE
=2

∴.cos∠AEO=
5
5
∴二面角A-BC-D的余弦值为
5
5

精英家教网
点评:本小题主要考查直线与平面垂直的判定,以及二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,
AB=2,AC=
6

(I)求证:AO⊥平面BCD;
(II)求二面角A-BC-D的大小;
(III)求O点到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O.E分别为BD.BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求 异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,0是BD的中点,CA=CB=CD=BD=a,AB=AD=
2
2
a

(1)求证:平面AOC⊥平面BCD;
(2)求二面角O-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD的各个面都是直角三角形,已知AB⊥BC,BC⊥CD,AB=a,BC=a,CD=c.
(1)若AC⊥CD,求证:AB⊥BD;
(2)求四面体ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四面体ABCD中,O、E分别是BD、BC的中点,AO⊥平面BCD,CA=CB=CD=BD=2.
(1)求证:面ABD⊥面AOC;
(2)求异面直线AE与CD所成角的大小.

查看答案和解析>>

同步练习册答案