精英家教网 > 高中数学 > 题目详情

【题目】如图, 是边长为3的正方形,平面,BE与平面所成角为

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)设点M在线段BD上,且平面BEF,求的长.

【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ)

【解析】

()利用线面垂直的判定定理即可证得题中的结论;

()建立空间直角坐标系,利用平面的法向量可得二面角的余弦值;

()结合()中的结果和空间向量的结论求得点M的坐标即可求得的长.

(Ⅰ)因为平面,所以

因为是正方形,所以

BDDE交于点E,从而平面

(Ⅱ)因为DADCDE两两垂直,所以建立空间直角坐标系如图所示.

因为BE与平面所成角为,即

所以.由可知

所以

设平面BEF的法向量为,则

,令,则

因为平面,所以为平面的法向量,

所以

因为二面角为锐角,所以二面角的余弦值为

(Ⅲ)点M是线段BD上一个动点,设.则

因为平面BEF,所以

,解得

此时,点M坐标为,符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+2x2y+10和抛物线Ey22pxp0),圆C与抛物线E的准线交于MN两点,MNF的面积为p,其中FE的焦点.

1)求抛物线E的方程;

2)不过原点O的动直线l交该抛物线于AB两点,且满足OAOB,设点Q为圆C上任意一动点,求当动点Q到直线l的距离最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学数学老师分别用两种不同教学方式对入学数学平均分和优秀率都相同的甲、乙两个高一新班(人数均为 人)进行教学(两班的学生学习数学勤奋程度和自觉性一致),数学期终考试成绩茎叶图如下:

(1)现从乙班数学成绩不低于 分的同学中随机抽取两名同学,求至少有一名成绩为 分的同学被抽中的概率;

(2)学校规定:成绩不低于 分的优秀,请填写下面的联表,并判断有多大把握认为“成绩优秀与教学方式有关”.

附:参考公式及数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程.

(1)设,方程有三个不同实根,求的取值范围;

(2)求证:是方程有三个不同实根的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高二学生上学路程所需要的时间(单位:分钟),从高二年级学生中随机抽取名按上学所需要时间分组:第,第,第,第,第,得到的频率分布直方图如图所示.

)根据图中数据求的值.

)若从第 组中用分层抽样的方法抽取名新生参与交通安全问卷调查,应从第 组各抽取多少名新生?

)在()的条件下,该校决定从这名学生中随机抽取名新生参加交通安全宣传活动,求第组至少有一志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥OABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA2MN分别为OABC的中点.

1)求证:直线MN平面OCD

2)求点B到平面DMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:

(Ⅰ)求的值;

(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?

参考公式及数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C,直线

1)若,被圆C所截得的弦的长度之比为,求实数k的值

2)已知线段AB的端点B的坐标是,端点A在圆C上运动,求线段AB的中点M的轨迹方程

查看答案和解析>>

同步练习册答案