已知在直角坐标系
中,曲线
的参数方程为:
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,直线
的极坐标方程为:
.
(Ⅰ)写出曲线
和直线
在直角坐标系下的方程;
(II)设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,
、
分别是椭圆
的顶点,过坐标原点的直线交椭圆于
、
两点,其中
在第一象限.过
作
轴的垂线,垂足为
.连接
,并延长交椭圆于点
.设直线
的斜率为
.![]()
(Ⅰ)当直线
平分线段
时,求
的值;
(Ⅱ)当
时,求点
到直线
的距离;
(Ⅲ)对任意
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右焦点分别为
,且经过点
,
为椭圆上的动点,以
为圆心,
为半径作圆
.
(1)求椭圆
的方程;
(2)若圆
与
轴有两个交点,求点
横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
,直线
的参数方程为
为参数,
).
(Ⅰ)化曲线
的极坐标方程为直角坐标方程;
(Ⅱ)若直线
经过点
,求直线
被曲线
截得的线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(Ⅰ)若ΔABF2为正三角形,求椭圆的离心率;
(Ⅱ)若椭圆的离心率满足
,0为坐标原点,求证
为钝角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,
,
为椭圆
的两个焦点,点
在椭圆
上,且
的周长为
。
(Ⅰ)求椭圆
的方程
(Ⅱ)设直线
与椭圆
相交于
、
两点,若
(
为坐标原点),求证:直线
与圆
相切.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的四个顶点恰好是一边长为2,一内角为
的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的离心率为
,
是其左右顶点,
是椭圆上位于
轴两侧的点(点
在
轴上方),且四边形
面积的最大值为4.![]()
(1)求椭圆方程;
(2)设直线
的斜率分别为
,若
,设△
与△
的面积分别为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系
中,曲线
的参数方程为
,
以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
⑴ 求曲线
的普通方程和曲线
的直角坐标方程;
⑵ 当
时,曲线
和
相交于
、
两点,求以线段
为直径的圆的直角坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com